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PREFACE

This is the second volume of our Final Report for work done

under NASA Contract Number NAS 8-900e.

This volume, like the first one, is divided into two parts.

Part A is devoted to an analytical study of the time-optimal control

problem and is a direct continuation of Part A of the first volume.

It consists of results obtained by Daniel C. Lewis and Pinchase

Mendelson and was also written by them. Part A of the present volume

starts with Chapter 13. The preceding twelve chapters of Part A are

contained in the first volume. Bearing this fact in mind, the reader

should have no difficulty in following all references which appear in

the text.

Part B is devoted to work carried out by J. Gilchrist,

J. Schlessinger_ G. Campbell and K. A. Ivey on computer simulation

of time-optimal control laws. The final editing of this part was

carried out by Keith A. Ivey.
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PART A

MATHEMATICAL THEORY OF THE TIME OPTIMAL CONTROL PROBLEM

By

DANIEL C. LEWIS

PINCHAS MENDELSON
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CHAPTER 13

A CLOSED CONTROL LAW FOR THE SYSTEM "i" = £, e = + 1
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1. Derivation of A Closed Control Law For The System "_" = e

The trivial system

Xl = _' c = t i, (i)

is controlled time-optimally by the function

e : sgn _, _ = -x I. (2)

We shall write eI = sgn (-Xl).

The function eI may be used to define a closed form control

law for the second order system.

Xl = e, x2 = Xl' e = _+ 1 (3)

In fac% let

_i = el

i 2 i 2
if2 = x2 - 2 _iXl = x2 + 2 (sgn Xl)X I (4)

and define

= -_2 = -[x2 2 (sgn (5)

-7_



Then

¢2 = sgn

is the time-optimal control law for system (3).

(6)

The fact that (6)

does indeed define the time-optimal control law is clear by direct

inspection using the known switching curve for system (3). However,

certain remarks concerning the definition of _2 and _ are in order.

Regarding the former we note that

_2 = !

where

I Y2 if _i = i

-z 2 if _l = -1 (7)

Yl : Xl

i 2

Y2 = x2 -2 x i
(e)

are the auxiliary variables defined extensively in previous chapters

(cf. Chapter 2, pp. 25-26 ). On the other hand, equation (5) arises

naturally from the known equation of the switching curve of system



(3)- The switching curve is composedof 2 branches (leaves) given,

respectively, by the equations and inequalities:

f(Y2): Y2 : o,

f(z2) = z2 = O,

Yl < 0

zI < 0

The function _may thus be defined by:

o- : -f(o'2) = cr2 = -(sgn o-2) Io-21.

This procedure can be carried still further and the function

e2 may be used to define the closed form control law for the third

order system.

Xl = e, x2 = Xl' x3 = x2' 6 = _ 1 (9)

We recall first that the auxiliary variables for system (9) are given

by [Chapter 2, pp. 25-26]:

Yl = Xl Zl : -Xl

i 2 2
Y2 : x2 - 2 Xl z2 : -(x2+_21 Xl)

z,(x+xxY3 = x3-x2xl + 3 = 3 2 1 3

(zo)

-9-



Let

I 2
_) = x2- _ _ xI

n) : x3- n x2xl+ 3
(il)

then clearly

i=2, 3

i=2, 3

Define

_i = e2

I 2

_2 : h2(xl' _2' _3' _i) = x2- 2 _ixl

1 X_
_3 = h3(Xl" x2' x3' al) = x3- _iX2Xl+ _

in which case

_i = Yi if _I = i

= -z if _l = -1ai i

i:2, 3

The two leaves of the 2 dimensional switching surface of system (9)

-i0-



are given by

0 h <0,
z2 z2

Let

e = -[ (sgn 0"3) le312+ ,_23] (IP__A)

We shall show that a is a closed time-optimal control law for system

(9).

Let P(Xl, x2, x3) be an arbitrary point in phase space which

does not lie on the switching surface of system (9), and whose pro-

jection (Xl, x2) on the (Xl, x2)-plane does not lie on the switch-

ing curve of system (3). The last condition implies that el(P ) is

either +i or -I. Assume first that el(P ) = + i. The case el(P ) =

-1 will be treated later in an analogous fashion.

The variables (Xl, x2) may be expressed in terms of (Yl' Y2 )"

Therefore, the function

function of (Yl' Y2 )"

set of all those points

Z

el(Xl, x2) = _2(Xl, x2) may be viewed as a

In the (Yl' Y2 )-plane let Z denote the

= p_P such that el(P* ) _2( ) = 1. The set

is bounded by the two leaves (i) y2= 0, Yl < 0, (ii)

-ll-



1 2 2
z2:-(x2+g xl) ---(y2+yl)_-o, zl---Yz< o (Figurez).

D

FIGURE i

D
In the (YI' Y2' Y3 )-space let Y3 denote the Y3- axis and

let Z = Z × Y3_ where × denotes the Cartesian product. Z is

then the cylindrical set, parallel to the Y3-axis, whose base in

_12



the (yl,Y2)-plane is the set Z ° Clearly if _l(P) = 1 then

P e Z.

The leaf R22 of the two-dimensional switching surface R2

boundedby RII U RI2 .

sented, in terms of the

is

These one-dimensional leaves may be repre-

y's, as follows_

Rll: Yl _ O, Y2 = O, Y3 = O, (13)

Y3
R12: y_ < O, y3+ y2yl = O, y_ + y_ =0 C__4)

(Chapter 2, p. 27 and p. 30.). The projection of RII on the

(yl,y2)-plane is the negative half of the Yl- axis. To find the pro-

jection of R12 , solve for Y3 in the first equation in (14) and

2
substitute in the second. The result is Y2 + Yl = O. Moreover, sub-

stitution of Y3 into the inequality in (14) yields Yl > 0. There-

fore, the projection of RllU R12 into the (yl,Y2)-plane coincides

with the boundary of Z . The leaf R22 is obtained by solving back-

wards in time, using e = + l, starting on R12. Therefore, in the

(yl,Y2,y3)-space the leaf R22 is a cylindrical set parallel to the

Yl-axis and such that along every generator of this leaf the maximum

value of Yl is attained at a point on R12. R12 is thus the

edge of R22 with respect to the Yl-axis. It follows that the

-15-



projection of R22 on the (yl,Y2)-plane is the set Z .

Wehave arrived at the following configuration: In the (yl_Y2)-

plane there is a set Z which forms a base of a cylindrical set

Z, parallel to the Y3-axis. Within this cylinder lies a leaf of

the switching surface (namely R22 ) in such a way that it is

parallel to the Yl-axis and its projection on the (yl_Y2)-plane is

.

the set Z . Hence R22 separates Z into two distinct parts.

In a completely analogous fashion we note that the variables

(Xl,X2) may be expressed in terms of (Zl, z2) and that therefore

the function _l(Xl,X2) may be viewed as a function of (Zl, Z2).

Define the set Z in the (Zl,Z2)-plane as the set of all points

P such that _l(P ) = -1. Let Z3 be the z3-axis in the

(Zl_Z2_Z3)-space and let Z' = Z × Z 3. Then R21 lies within Z'

and separates it into two distinct parts.

If we map the set Z' into the (yl,Y2,Y3)-space via the trans-

formation which relates the y's to the z's (Chapter 2, p. 27) we

obtain a set which must be contained in the complement of the set Z.

This may easily be seen as follows: Let P be a point in Z' With

O O X3o o z_). Let (Xl, x2' o) be the x-coordinatescoordinates (Zl, z2,

corresponding to (Zl, z_ z_). Then el(xl_ x_) = -1, by definition

-14-



of Z'. If (Y ' Y2' Y3) are the y-coordinates of (Xl, x2,
_C

then clearly (YI' Y2 ) _ Z , by definition of Z . Hence

in particular, that R21 , when imbedded in the (yl,y2,y3)-space ,

lies in Z c . We conclude that Z contains exactly one leaf

(namely R22 ) of the switching surface, is divided by it into two

parts and does not intersect the second leaf.

As stated above, the leaf R22 is parallel to the Yl-axis.

Its projection on the (y2,y3)-plane satisfies the equation y_ +

y_ = O. But R22_Z whence Y2 _ 0 for all points on R22. Thus,

by (12), Y3 _ 0 on R22. Hence the projection of R22 on the

(y2,Y3)-plane is given by

2y3+y =0

Y2 _ 0, Y3 _ 0

FIGURE 2

We are finally in a position to test the validity of the control

law given by (12A). If _I(P) = + i, then P c Z and

-15-



e(P) = -[(sgn y3)ly}I 2 + y93].

There are two possibilities:

(i) Y3 > 0, in which case

e(P) = -(y_+ y_)

and sgn e(P) is as indicated in Figure 3.

Sgn e(P) when

el(P) = i and Y3 > 0.

(ii)

and

Y3 < 0 in which case

o(P) = -(-lY31 2- ly21 3) > 0

sgn e(P) - + i. (Figure 4)

FIGURE 3

Sgn e(P) when

el(P ) = 1 and Y3 <0

FIGURE 4

Thus sgn _(P) assigns the value + I

lying on the one side of R22 and the value

to all points of Z

-I to all points of Z

-16-



lying on the opposite side. The fact that this particular assignment

is the correct one (and not the reverse assignment) follows from a

direct inspection of the switching surface (Chapter ll, Plates I, II,

III following p. 127).

If °i(P)---1

and again sgn _(P)

sides of R21

then _(P) : -[(sgn(-z3)}]z312+ (-z2)3 ]

assigns the value + 1 and -i on opposite

(in Z'). Note, however, that in this case

s(P) = [(sgn z3)Iz312+ z23]

assigns the opposite values (in the Cz2,z3)-plane) from those assigned

in the (y2,y3)-plane in the comparable regions (Figure 5)-

!iiIIIl 
ilIIIIIIrII[IIIII

l!li!IIl[i[liil[I
FIGURE

-17 -



This, of course, conforms to the fact that these two leaves correspond

to opposite _alues of control.

-18-



2. Appendix: Alternative Proof For The Control Law of § i.

The proof of the control law for the system Xl = c_ _2 = Xl,

x3 = x2' given in § I, supersedes the proof given here for the same

law. Despite the fact that the proof given here is inferior to the

one given in § I from the point of view of brevity and elegance, the

present proof contains some ideas not occurring in the other proof

which might prove to be valuable in more complicated cases.

The determination of c is made as follows:

Let

_i =

1 2

_Ix2 if Ix2i> _ xl1 2
xI if Ix_l_ _ xI

(1)

and let

1 3
_3= x3+ (sgn _l)XlX2 + _ xI

i 2
c2= x2+ _(sgn al)X 1

= -((sgn _3)I_312+ (sgn _2)I_213).

Note that (sgn e2)I_213= _23. Hence in this case

= -((sgn_5)I_5 +

(2)

-19-



Finally, we let

e = sgn _. (5)

If the law is correct, the closure of the complete control

surface R2 should be given by the equation _ = 0. From our pre-

vious developments, we know that R2= R21 U R22, where R21 is

characterized by

Zl< - z/z 2

z/z 2 < 0

z + z3 = 0,

1 2

where Zl= - Xl, z2= - x2- _ xl,

is characterized by

z}= - x 3- XlX 2-

i6a)

(6b)

(6c)

and R22

Yl < - Y/Y2 (7a)

Y/Y2 < 0 (Tb)

2Y + Y3 = 0 (7c)

i 2 i x_where yl = Xl, y2 = x2- _ xI, y3 = x3- XlX2 + _ .

The first part of our proof is to show that e = 0 does indeed

yield the closure of R2. To do this we consider the following four

regions of phase space:

-20-



1 2
sI : Jx2J l, xl>0.

1 2

S2 : x 2 > _ xI,

1 2
s5 : Ix21 I, xI<o

1 2

S4 : x2 < - _ x I

All points of the phase space lie in the closure of the union of

these four regions, and no two of these four regions have a <ommon

point.

1 2
LEMMA i. If (Xl,X2,X3) 6 SIU S2, then o I > 0, 02= x2+ _ xI =

- z2 > 09 03= x3+ XlX2 + _ x = - z3. If, in addition, o = 0 for

this point, then -0 = (sgn o3)o_ + o_ = O, o3 < O, -o_ + o_ = O_

which is equivalent to z_ + z_ = O.

The proof of this lemma is omitted, since it is a routine job to

check in succession the statements of the lemma in the two cases when

(Xl,X2,X3) ¢ SI and where (Xl,X2,X3) e S2. To do this, we, of course,

use the definition, given by (i), (2), (3) and (4) of the various o's

as well as the equations defining z2 and z3.

1 2
LEMMA 2. If (Xl,X2,X 3) _ S3U $4, then oI < O, o2 = x2- _ x =

Y2 < 0, e3 = x3" XlX2 + 3 x = Y3" If, in addition, a = 0 for this

-21-



point, then -0 = (sgn o3)o_ + o3 = 0,

which is equivalent to Y3 + Y23= O.

o,+ o,

The proof of this lenmm is omitted for reasons analogous to those

given for omitting the proof of Lemma i.

LEMMA 3. If (Xl,X2,X3) c SIU S2 and if o = 0, then (6b) and

(6c) are both satisfied.

PROOF. The fact that (6c) is satisfied is clear from the las_

statement in lemma i. It is also clear from lemma i that z_,/z2 =

(-03)/(-02) = oyo 2 < 0, since according to lemma i, 02 > 0 in

S IU S2 and 03 < 0 if, in addition, o = 0.

LEMMA 4. If (Xl,X2,X 3) _ S3U S4 and if o = O, then (7b) and

(7c) are both satisfied.

PROOF. The fact that (7c) is satisfied is clear from the last state-

ment in lemma 2. It is also clear from lemma 2 that YYY2 = °Y°2 < O_

since according to lemma 2, 02 < 0 in S3u S4 while 03 > 0 if,

in addition, o = 0.

LEMMA 5. If (Xl,X2,X3) c SI U S2 and if o = 0, then (6a) is

satisfied.

-22-



PROOF. If (Xl,X2,X3) c SI, then, from (i), Cl= Xl= -zI > 0.

From lemma3 and (6b), we have zJz 2 _ 0 _ ,Zl, which implies

(6a).

If (Xl,X2,X3) c $2, then, from lenmua i, we have z3 =

-°3' z2= -_2' °2 > 0 and

Zl= - x I
(8)

by definition of zI.

lemma i, if e = O,

z_z2 = _i/2.

Hence zJz2= oJo2,

o3= -_23/2 . Hence

while we also have by

(9)

1 2 1 2 2
Again from lemma i, o2= x2+ _ xI = (x2- _ Xl ) + x I. Hence,

2 1 2

= x2- _ x I > 0 because (xi,x2_x3) c S2. Therefore,O 2 - x 1

>x21. _erefore, o > IxiI, and <- IxiI.,,HencefromC 2

(8) and (9) we find that

-Xl-Xl -2x I _ 0 if
z_3+ •
z2 Zl= _ _/2 _ Xl < _ ixll_ Xl=

Xl-Xl = O, if x I _ 0.

xI >0

-23-



Thus (6a) holds for any (Xl,X2,X3) c S2 for which o = 0. This

completes the proof of lemma5-

L_A 6. If (Xl,X2,X 3) _ S3U S4 and if o = 0, then (7a) is

satisfied.

PROOF.

From lemma 4 and (7b), we then have Y_Y2 < 0 < -YI'

(Ta).

If (Xl,X2,X3) c $4, then, from lemma 2, we have

If (Xl,X2,X3) _ $3, then, from (i), _i = Xl= Yl < 0.

which implies

Y3= _3'

y2 = o2, o2 < O_ and

Yl = xI
(io)

by definition of YI"

lemma 2, if o = 0,

Hence yJy2 = _o 2,

o3= (-o2)3/2 Hence

while we also have, by

(-o2)i/2 (ll)

Again from lemma 2,

2 1 2

x I = x2+ _ x I < 0

i 2 i 2 2
_2 = x2- _ xI = (x2+ _ Xl) - xI. Hence o2+

since (Xl,X2,X3) c S 4. Therefore, (-o2)i/2 > IXll

-24-



and -(-_2) I/2 <-IXll. Hence, from (i0) and (ii)we find that

Y3_ (_o2)1/2+- + Yl = - xI < -IXll + x I __0.
Y2

Thus (7a) holds for any (Xl,X2,X3) 6 S4 for which _ = O. This

completes the proof of lemma 6.

_l,a2,c 3 are continuous functions of xI and x2 in

PROOF.

_i = x I

From the definitions of SI and S3, we see from (i) that

in Slu S3. Hence, from (2) and (3)3 we have

1 iXl 3 ,_2 = x2+ _ IXIIx I and 03= x3+ IxIIx 2+

whence the lemma is obvious.

LE_8. If P

S.(i = 1,2,3,4) and if _ = 0
1

P contains at least one point

such that _ = 0 also at Q.

is on the boundary of any of the regions

at P, then every neighborhood of

Q interior to either SI or S3

-25-



PROOF. From the definition of regions S. it is clear that any
1

boundary point of S2 and S4 is also a boundary point of S I

or S3. Hence we may restrict attention to the case where P is

a boundary point of SI or S3.

The regions S. are cylindrical regions, since the defining
1 ""

inequalities are independent of x3. Their bases in the Xl_X2-plane

i 2 *
are bounded by the parabolas x2= _ _ xI . The projection P of

P on this plane must therefore lie on one of these parabolas and the

projection of a neighborhood of P must be a small region, containing

a set Z of points Q lying interior to the bases of either S 1

or S3 (or possibly both) and having P as a limit point(of Z*).

Now the function _ is seen from (1), (2)_ (3)and (4) to be a

quadratic polynomial F(x3) in x3 with coefficients which are

functions of xI and x2. Moreover, these coefficients are continuous

in (Xl,X2) in SI U S3 by lemma 7. The leading coefficient is

-sgn _3"

Suppose first that _3(P*) = O. Then _3(P*) = sgn _3(p )XlX2+

1 _ * _3(p.)x2x = O. Hence either Xl= Xl(P ) = 0 or else sgn (P*) +

1 Xl(P*)2 * 1 * 2 *= O, whence either x2(P ) = - _ Xl(P ) or x2(P ) =

1 Xl(P*)2" * i 2But at P x2= _ _ xI . Thus Xl(P*) = O. Thus we have

shown that if _3(P*) = 0, then Xl(P*) = O. The only point on

-26-



1 2
Xy= _ _ xI which satisfies Xl= 0 is the origin. Hence, if

c3(P ) = 0 then P is the origin. But then P = (0,0,x3) where

P is further constrained by the requirement that _(P) = 0. We

then have _l(P) = 0, cy(P) = O, _3(P) = x3. Hencethe equa_
2

tion a(P) = 0, which can here be written -(sgn x3)x3 + 0 = 0,

implies that x3= O. Hence P is at the origin. The statement of

the lemmais manifestly true if P is at the origin.

The argument contained in the last part of the above paragraph

also showsthat, regardless of the value of _3(P*), the only point

P, whose projection into the Xl,xy-plane is the origin and which

satisfies _(P) = O, is the origin itself.

Supposenext that _3(P*) _ O. Then P is not the origin and

P lies on one of the four branches of the parabolas mentioned above.

Since _3 is a continuous function of Xl,X 2 in S1U S3, there
.

exists a neighborhood of P in S1U S3 such that _3(Q) is bounded

away from zero throughout that neighborhood, N. Therefore, the poly-

nomial F(x3) has coefficients continuous in Xl_X2 throughout N

and leading coefficient boundedaway from zero. It follows that the

roots x3 of F(x 3) = 0 are continuous functions of Xl,X 2 through-

out N. Hence, if Q is sufficiently close to P and

Q c $3_ [x3= O] (or Q c S1 _ [x3= 0] _s the case maybe), there

-27-



exists a root x3(Q*) of F(x3, Q*) = 0 which lies close to the

value of x3 at P. Let (Q*, x3) = Q. Clearly Q c S3 (or S1

as the case maybe) and s(Q) = O. This completes the proof of

leNEna8.

THEOREM i. The set of points where _ = 0 is included in the

set R2 = R21U R22

PRO___OF___.From le_mas 3 and 5, we see that, if _ = 0 at P and if

P ¢ S I_ S_, then P c R21_ R21" From lemmas 4 and 6, we see that,

if _ = 0 at P and if P ¢ S 3U_$4, then P c R22CR22. From

lemma 8, we see, that if a = 0 at P and if P is on the boundary

of one of the regions Si(i = 1,2,3,4), then P is a limit point

of points Q in either S I or S3 where _ = O. Hence, P is in

this case a limit point of R21 or R22. That is, P _ R21U R22

in all possible cases regarding the location of P. Q.E.D.

LEMMA 9. If P c R21 , then P _ (SIu,S2) and _ = 0 at P. Here

.

we use (SIU $2) to denote S1 U.S 2 plus the points on the bound-

ary common to S1 and S2 less the x3-axis. It is also the same
c

as the complement of S3 U S4 denoted by (S3U S4) •

-28-



PROOF.

z2<O.

of S4 we thus see that P @$4"

z2 < 0, we find that ZlZ2 > -z 3.

and hence zI __ 0 and ZlZ 2 <- 0.

22 2 23ZlZ 2 < z3 = - z by (6c). Hence

2 < x2+ I 2z's this means that xI _ xI .

tradicts the assumption that P e $3 "

(SI O S2)*

R21 is characterized by (6a), (6b), and (6c), From (6c),

1 2
Hence by definition of z2, x2+ _ x I > O. By definition

From (6a) and the fact that

Suppose P c $3' then x I G 0

Therefore, 0 & -ZlZ 2 < z 3. Hence
2

z_ < -z_. By definition of the

But this last inequality con-

__C

Therefore, P e (S 3 U s h) =

weNow, if P(Xl,X2,X3) 6 R21 and therefore P _ (S 1 0 S 2) ,

1 2
find_ as in lemma i, that oI > O, 02= x2+ _ xI = -z2, o2 > 0_

z2= -02 < O,

2

-0 3 +

1 x_ = -Zy03= xo+ XlX2 +

we have z3 > 0 and hence

_ = O. Since o3 < O,

(sgn  3)1o312+ : o.

From (6b) and the fact that

_3 < 0. From (6c) we now have

this last equation may be written

Hence, _ = 0 at P as required.

i0. If P c R22 , the_ P c (S3 U S4)* and o = 0 at P.

PROOF. R22 is characterized by (7a), (7b), and (7c). From (7c),

1 2
Y2 < O. Hence, by definition of Y2' x2- 2 Xl ( O. Hence, by

definition of S2, P @ $2' From (7a) and the fact that Y2 _ O,

we find that Yl y2 > -Yo' Suppose P e SI' then x I _ 0 and hence
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Yl _ 0. Therefore ylY2 _ 0 and 0 _ -yly 2 < Y3' Hence

22 2 _ 2Yl y2 < Y3 = -y by (7c). Therefore Yl < -Y2" When this in-

equality is written in terms of the x's we find that

1 2

x2+ _ x I < 0, which contradicts the supposition that P c SI'

Therefore, P c (SI U $2 )c = (S3 U $4)*

Now, if P(Xl,X2,X3) c R22 and therefore P c (S3 D S4) ,

1 2
we find, as in lemma 2, that aI < 0, _2 = x2- _ x I = Y2 < 0,

z D
a3= x3-xlX2 + 3 Xl = Y3" From (7b) and the fact that Y2 = d2 < 0,

we have Y3 > 0 and hence _3 > 0. From (7c) we now have d_ +

u_ = 0. Since a3 > O, this last equation may be written

(sgn _3)Ia312 + a_ = 0. Hence d = 0 at P as required.

THEOREM2. If P c Ro, then a = 0 at P.

PROOF. (P c R2) => (by lem.mas 9 and i0) that d(P) = 0 and that

)* *
P c (SIU S2 or (S3U S 4) Suppose P c R2- R2" Then P

is in the boundary of R21 or R22 . Hence P must lie on the

boundary between S4 and SI or between S2 and S3 including

the possibility that

last case (P c R21 ) => Y23 + Y3 = O.

(y3 = 0) => (x3= 0), which means that

d(P) = 0. Thus_ we may assume that P

P might lie on the x3-axis. But in the

However, (Xl= x2= 0 ) => (_I = _2----- O_---

P is at the origin. Hence

is not on the x3-axis.
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Suppose therefore that P lies on the boundary between S2 and

S3 but let it be not on the xs-axis. It is also known, that P

is on the boundary of R21 or R22 , i.e., P c Rll U R12. From the

definition of S2 and S3 we have

1 2
x I < 0, x2= _ xI (for P on the common boundary of S2 and $3)

(12)

Hence y2 = y3 = O.

Xl3 = _3' since

Since, Xl= Yl < 0 it follows that P e hi"

1 2 i

But Y2 = x2- 2 Xl= c2 and Y3 = x3- XlX2 +

_i = x I < 0. Thus _2 = _3 = 0, so that _ = 0.

If P lies on the boundary between S4 and SI a similar

proof shows again that _ = 0, so that the proof of Theorem 2 is

complete.

Theorem i and 2 may be summarized by the statement that the

points where _ = 0 are precisely the points of R2 = R21U R22" If

were continuous and had a non-vanishing gradient, we could finish

the proof of the control law by verifying its validity at just one

point where _ / 0. It turns out, however, as follows from (i),

(2), (3) and (4), that _ may experience discontinuities at points

1 2
on the surfaces x2= _ _ x I where _ / 0. Hence, for a complete
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proof, it appears necessary and sufficient to verify the control law

at four separate points, one in each of the four regions S1,$23S53

and S4. For we easily see that _ is continuous in each of these

regions separately and has a non-vanishing gradient on R2.

The program was carried out using the following specific points

PI(6,0_ -281 ¼) ¢ SI, P2(6,19_43) _ $2, P3(-6,0_281 ¼) ¢ S3 and

P4(-6,-i9,-43) e S4.

P4 and _ = -i at

correct values of c

The control law yielded c = + i at PI and

P2 and P3 which is in agreement with the

at these points as computedin Chapter ii.
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CHAPTER 14

A GENERAL THEORY OF CONTROLFUNCTIONS
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On Control Laws For Systems Of Arbitrary Order. Reduction To

Canonical Form

The detailed analysis of the preceding chapter was intended

not so much to establish a control law for a special third order

system_ but rather it was intended to serve as a stepping stone to

the understanding of general systems of order n (not necessarily

with zero eigenvalues). It should be stated at the outset that the

general problem is by no means solved. However, it is now definitely

reduced to a simpler problem (of lower dimensionality) in which all

surfaces appear in canonical form. These facts are elucidated be-

low.

Consider a system S of the form

=Ax +a6

Xn + i= c_x + dx n + I+ 56,

(I)

where x = (Xl, ..., Xn) is an n-vector, A is an n × n matrix,

a and c are constant n-vectors, d and _ are given scalars and

e, the control parameter_ may take on the values

th
n order system

+ i. The associated
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= Ax + a¢ (2)

is denoted by S . We assume_ of course_ that system (1) is controll-

able in some neighborhood of the origin.

We now pose the following general problem: For a given system

S suppose that a closed form control law, _n(X)_ for the associated

system S is completely known. Can Cn(X ) be used to generate a

closed-form control law_ Cn+l(X_Xn+l) for the higher order system

S ? It is this problem which has ncwbeen reduced to a simplerform.

Let us recall the main features of the affirmative solution to

this problem as given in Chapter 13 for the special case of a system

S of order three with three zero eigenvalues. The vector x in

the present formulation corresponds to the vector (Xl,X2) in

Chapter 13_ while the vector (X, Xn+l) corresponds to (Xl_X2_X3).

The associated system S was given by

_l = c, _2 =Xl (3)

and its control law_ c2(x), was known.

used to define a set of two new functions

_i (x) =Yi if _2(x) = +l, i =2,3

_i(_) =-z._ if _2(x) =-l, i =2,3.

-35-
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The vector (Xl_X2,X3) maybe expressed in terms of (yl_Y23y3)

in such a way that xI and x2 are functions of (yl,y2) while

x3 is a function of (yl,y2,y3). The samestatement holds true if

we interchange xi with yi, i = 1,2_3 . In particular, _2(x)

maybe viewed as a function of (yl,Y2). In the (yl,Y2)-plane we
.

defined the set Z as the set of all points for which c2= + 1.

Weused the set Z as the base of the cylinder Z in the (yl_y2,y3)-
.

space, where Z was the Cartesian product Z × Y3" Wethen showed

that Z contained exactly one leaf of the switching surface of the

system S and did not even intersect the other leaf. Finally we

showedthat the leaf which was contained in Z had the following two

essential properties: (i) it was parallel to the Yl-axis, i.e., it

was orthogonal to the (y2_Y3)-plane_ and (ii) it separated Z into

two distinct parts. In complete analogy with the above we also con-

structed the cylinder Z' in the (Zl_Z2, Z3)-space and it turned out

that Z' contained the second leaf of the switching surface and did

not intersect the first. Moreover_ the leaf contained in Z' had

the sameproperties in the (Zl_Z2_Z3)-space as listed abov% namely:

(i) it was orthogonal to the (z2_z3)-plane , and (ii) it separated

Z' into two distinct parts. This construction was finally used to

generate a control function for the given system.
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The basic construction summarized above applies to (n + 1)st-

order systems of type (1).

Associated with system (1) are two sets of auxiliary variables,

(Yl''''' Yn+l ) and (Zl,... , Zn+l). These auxiliary variables re-

duce the equations of the system to canonical form for c = + 1

and c = - l, respectively. We recall that (Y2' "''' Yn+l ) and

(z2,..., Zn+l) are defined by means of n time-independent first

integrals of the system S. These first integrals contain c as a

parameter and the y's and z's are obtained (except for the intro-

duction of a negative sign designed to guarantee that the transforma-

tion from the y's to the z's be involutory) by substituting the values

+l and -1 for _ in these first integrals. Denote the time-in-

dependent first integrals by hi(X,Xn+l_ c), i = 2,..., n + 1. Due

to the particular form of (1) it is clear that we may pick the first

(n-l) of thes% namely h2, ..., hn, in such a way that they are in-

dependent of Xn+ 1. In other words, h2(x, _), ..., hn(X , c) are

time-independent first integrals of S .

cedure we now define canonical variables

S by means of the transfor_mtions

yi = hi(x , Xn+l_ + i), i = 2, ..., n+ i,

zi= -hi(x , Xn+l_ -I), i = 2, ..., n+ i,

Following our standard pro-

Yi and z. for the system1

(3)
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and it is clear from the above remarks that (y2_ ..._ yn) and

(z23 ..._ Zn) are part of a canonical set of variables for the

system S . At the risk of redundance_ we note again for future re-

ference that (Y2"''' Yn ) and (z2, ..., z ) are independent ofn

Xn+ 1 •

When the variables Yl and zI are added to (3), [see Chapter

l] the transformations (3) are invertible in a neighborhood of the

origin and it is clear that the inverse transformations are of the

form

x = _(YI' "''' Yn ); Xn+l= q_n+l(Yl ,-.-, Yn+l )

x--_(zl, .., z )_ ..• n Xn+l: Yn+l (zl' "' Zn+l ) (4)

Define

Z = [(YI''''' Yn)len(_(Yl'''''Yn)) = + i]

Z : [(Zl,..., Zn)16n(Y(Zl,...,Zn)) = - i].

Z is simply the set of all those points in the space of (yl,...,yn)

at which the function e takes on the value + i. Z is described
n

similarly . Let Yn+l[Zn+l] denote the Yn+l-axiS[zn+l-axis ] in
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the space of y's [z's]. Let

E = E X Yn+l _ E' = X X Zn+ I .

The following theorem embodies the first crucial step in the

development of our method.

THEOREM1. Let Rni , i = 1,2_ be the two leaves of the n-

dimensional switching surface of the system S. Consider Rni _

i = i_2_ as imbedded in the space of y's. If n is even then

Z_ Rn2 _ Z _ Rnl = 0 and Rn2 separates Z into two distinct parts.

If n is odd then Z_ Rnl _ E_ Rn2= 0 and Rnl separates E

into two distinct parts.

A completely analogous theorem holds for the set Z' _ namely_

THEOREM i '
Consider Rni , i : 1,2, as imbedded in the space

of z's. If n is even then E'_ Rnl , Z _ Rn2 = O, and Rnl

separates E' into two distinct parts. If n is odd the subscript

i is simply replaced by 2.

PROOF. RII coincides with the negative half of the Yl-axis. There-

fore Rll is parallel to the Yl-axis. R21 is obtained by solving

backwards in time starting on Rll and using c = -1. R31 is
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obtained by solving backwards in time, starting on R21 and using

c = + 1. Hence R31 is parallel to the Yl-axis. It is clear there-

fore that the leaf Rkl of the k-dimensional switching surface Rk

is parallel to the y_-axis iff k is odd. Similarly it is clear

that the leaf Rk2 of the k-dimensional switching surface Rk is

parallel to the Yl-axis iff k is even. In particular_ one has that

Rn2 is parallel to the Yl-axis iff n is even and Rnl is parallel

to the Yl-axis iff n is odd, where (n + l) is the order of the

system

odd.

OUS.

Let Rki_ Rki_

S. We may assum% without loss of generality_ that n is

The treatment of the case when n is even is completely analog-

i = i_2_ denote the leaves of the k-dimensional

switching surfaces in the systems S and S , respectively. The

.

leaf RII is given by Yl _ 0, y2 = ... = Yn+l = 0. The leaf RII is

given by Yl _ 0, y2= ... = yn = 0. It is clear from (4) that in a

neighborhood of the origin the (invertible) transformation from

(yl,...,Yn+l) to (Zl,...,Zn+l) is such that (yl,...,yn) is in-

dependent of Zn+ 1 while (Zl,..._Zn) is independent of Yn+l "

It follows that if we express the equations of Rll in terms of

z = (Zl,..._Zn) and Zn+ 1 we would get
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(i) one inequality which does not contain z
n+l

(2) (n-l) equalities which do not contain Zn+I

(3) one equality which contains z and Zn+I .

It is clear from the previous discussion that RII , when ex-

pressed in terms of z is identical with items (i) and (2) above.

Aasuming that n __3 we now proceed to eliminate zI by using

the (n-l) equations of RII which do not contain Zn+I . Once

this elimination is effected we get a new representation of RII of

the following type:

(i) gl (z) < O, where z = (Zl,... , zn)

(2) A(z)zl+ B(z) : 0

(3) fi(z):0, i : 3,...,n

(4) fn+l(Z' Zn+ I) = O,

where fn+l is independent of Zl, as are gl' A, B and fi'

i = 3, ..., n.

On the other hand, the representation of RII reduces to

(I) gl(z) < 0

(2) A(z)zI+ B(z) = 0

(3) fi(z) = 0, i = 3, ..., n_
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where gl(z), A(z), B(z), fi(z), i = 3,..., n, are identical with

those above.

The equations and inequalities of R21, when expressed in terms

of the z's are therefore of the form:

(1) gi(z)< o, i : 1,2

(2) fi(z): o, i : 3,...,n,

(3) fn+l(Z,Zn+I) : O,

while the equations of R
21

are given by the first two items alone.

If we express the equations of R21 in terms of the y's

obtain expressions in the form:

(1) g_(y)< o,
!

(2) _i(y)= o,

we

i = 1,2, Y = (Yl""'Yn)'

i = 3,.--,n,

(3) fn+l (y' Yn+l ) = O,

while the equations of R21

If n __ 4 we now eliminate

are given by the first two items alone.

Yl from the equations which do not con-

rain Yn+l in which case the expressions w_ch define R21 are replaced

by the appropriate equivalent sel in which only the last equation con-

rains Yn+l" The expressions defining R21 are identical with those, ex-

cept for the absence of the last equation containing Yn+l"

Proceeding thus by induction we finally arrive at the leaf Rn_2, 1
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which is given by

(i) g_(z)< 0, i = i, ...,n-2.

(2) fn.l(Z)= 0, fn(Z)= 0

(3) _+l(Z,Z_+l): o,

while the leaf Rn_2_ I

We now eliminate

fn(Z) : 0

Rn_2j I :

is given by the first two items alone.

by using the two equations fn_l(Z) =Z 1

to obtain the following equivalent representation of

(i) gi(z2,...,Zn) < 0, i = l, ...,n-2,

(2) A(z2,...,Zn)Z 1 + B(z2,...,Zn) = 0,

(3) f(z2,...,z n) = 0,

(4) k(z2,...,Zn+ I) = O.

.

At the same time, the r_resentation of En_2, I

three items alone.

Thus R _i, I is given by

(i) gi(z2,...,Zn) < 0, i = l,...,n-2_

consists of the first

_l< -B(_2' 'Zn)/A( n... Z_... _Z )_
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(2) f(z2"'''Zn ) = 0

(3) (z2, ) = o,k ...,z n

while the representation of Rn_l, 1

alone.

consists of the first two items

Expressing these equations and inequalities in terms of the

y's one gets, finally

(z) g_.(y)< o, i = 1,...,n-z

Rn_l,l: (2) f'(y) = 0

(3) k, (Y'Yn+I) = o,

whereas

(i) gi(y)< o,
R*
n-l, i:

(2) f'(y) = O.

i = l,...,n-1

Since n is odd, the n-dimensional leaf Rnl of the system S,

when imbedded in the space of (y, yn+l) , is parallel to the Yl-axis.

It consists of all those points which lie on trajectories which are

obtained by moving backwards in time, starting at Rn_l, 1 , with

c = + i. These trajectories are straight half-lines parallel to the

Yl-axis. In other words, Rnl is a cylindrical set (parallel to the



Yl-axis) for which Rn_l, 1 forms the upper edge with respect

to Yl"

The set Z consists of all those points in the space of y

for which en= + 1. Therefore, if P _ Z then the optimal tra-
.

jectory through P rises parallel to the Yl-axis until it inter-

sects Rn_l_l_Rn_l_ 2 . Since n is odd, n-1 is even whence
.

Rn_l_2 is parallel to the Yl-axis. The motion through P must

therefore intersect Rn_1 on Rn_l, 1 . Conversely, every point

which is obtained by moving downward(with respect to yl) from

Rn_l_1 , parallel to the Yl-axis, is in Z . It follows that Z

is a cylindrical set (parallel to the Yl-axis) for which Rn_l, 1

forms the upper edge with respect to Yl"

It is clear from the last representation of the leaves Rn_l, 1

and Rn_l_1 that Rn_l_lCRn_l_ 1 × Yn+l_ where Yn+l represents

the Yn+l-axis. This fac% when combinedwith the observations of

the two preceding paragraphs yields that Rnl is contained in Z.

Onenow shows, in a manneranalogous to the above, that Rn23

when imbeddedin the space of (Z,Zn+l) is contained in the set Z'.
O

Let Q(z_..._Zn+l) _ Rn2 and let the x- and y- coordinates

of Q be (x_ o ) and (y_. o•. •,Xn+ 1 •., Yn+l ), respectively. Since
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Q c z' it follows that Cn(X ,...,Xn °) = whence (y ,...,yn °) Z

o o zc
It follows that (yl_..._Yn+l) _ . Thus Rn2 _ when imbedded in

the space of (y,yn+l) does not intersect Z.

The n-dimensional switching surface R separates the' (n+l)-
n

dimensional space of (X_Xn+l) into two distinct parts (Chapter 12).

This property is preserved when Rn is imbedded in the space of

(y_yn+l). But since Z _ Rn= Rnl it follows that Rnl separates Z

into two distinct parts. This completes the proof of Theorem 1.

The proof of Theorem l' is almost identical, except for some

obvious modifications. The details are left to the reader.

We recall our general problem: Given a control function

Cn(X ) for the system S , find a control function Cn+l(X, Xn+l)

for the system S.

Suppose n is even. We note that the equation and inequalities

which define Rn2 in terms of y's and Rnl in terms of z are

identical except for the interchange of y's and z's and vice versa.

Thus the configuration of Z and Rn2 in the space of y's is

identical with the configuration of Z' and Rnl in the space of

z's. A similar statement holds for the case when n is odd.

Suppose again that n is even. The leaf Rn2 is orthogonal to

the hyperplane yl = O. A control function within Z would therefore
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be independent of Yl" Let sgn F(y2,...,Yn+ l) be a control function

within Z. The reader will readily convince himself that, on account

of the preceding paragraph, sgn[-F(z2,-..,Zn+l)] would then be a

control function within Z'. Let

F(_2,...,_n+l)_-_(__2,..._q+l) (5)

then sgn[-G(-z2,-- o,-zn+l)] is a control function within Z'. Let

i = 2,...,n+l
(6)

then clearly

ai= Yi whenever _n(X) = + i,

ai= -zi whenever en(X) = - i,

Define

o(X, Xn+l) : (i + Ol)F(o2,-.-,On+l) - (l-°l)G(o2"'''On+l)
(7)

then

en+l(x, Xn+l) : sgn o

(s)
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is a control function of S. We summarize these results in Theorem 2.

THEOREM2. Let sgn F(Y2,...,Yn+l) be a control function within

Z. Let G be defined as in (5) and let _i' i = l,...,n+l, be

defined by (6). Then Cn+l = sgn c is a control function for S,

where _ is defined by (7)-

The import of Theorems i and 2 is to reduce the problem of find-

ing a control function throughout the whole of phase space to that of

finding a control function (in terms of the y's) in the set Z alone.

This task is simplified somewhat further by the fact that Z is a

cylindrical set which is parallel to the Yn+l-axis and the leaf which

separates it (see Theorem I) is orthogonal to the hyperplane yl = O.

It is therefore sufficient to consider the projection of this leaf in

the hyperplane yl = O. Finally_ since Z is a cylindircal set parallel

to the Yn+l-axis it is sufficient to search for the two sides of the

separating leaf in the direction of Yn+l alone. This would certainly

tend to simplify greatly the problem of finding a suitable

F(Y2_...,Yn+l). However, a general procedure for obtaining this

function is not yet available.

One final remark is in order. The function _ is indeterminate

on the set on which c (x) = O. It also vanishes on the switching
n

surface of the system S. However_ these two sets have n-dimensional

measure zero and will therefore not affect the effectiveness of the

function c in any significant manner.
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CHAPTER 15

A CONTROL FUNCTION FOR CONTROLLABLE LINEAR

SYSTEMS WITH EIGENVALUES O,k,-k
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i. Derivation Of A Control Function For The Third Order STstem

With Ei_envalues O_ k_ -k.

In the preceding chapter we developed certain aspects of a

general theory of c cntrol functions. This theory was first

illustrated in Chapter 13 where we obtained a control function for

a third order system with three zero eigenvalues. In the present

chapter we shall use the same basic approach to obtain a control

function for the third order system

Xl : e

x2 = kx2+ e,

x3 : -kx3+ c,

(1)

where e, the control parameter, may take on the values J i, and

k is real. This system was discussed extensively in Chapter 9 of

this Final Progress Report [FPR] and the reader is referred to it for

the equations of the switching surface and the definition of the

auxiliary variables used below.

Denote the system (i) by S and the system

Xl = E

x2 = kx2+ e, > o (2)
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by S*. We recall that our procedure requires that before we attempt

to define a control function for the system S we first find a con-

trol function for the system S*. We shall therefore start by

addressing ourselves to this lower order system.

The function

el: sgn(-x I) (3)

is clearly a time-optimal control function for the system

S**: Xl: c, 6 : _ i. (4)

We shall use the function £i to define a control function for the

system S*.

Associated with the system S* are the auxiliary variables

(FPR, Vol. l, Ch. 9):

Yl = xI Zl= -xI

-kx I kx I

y2 = -i + e (kx2+ l) z2= -[1 + e (kx2-1)]

(7)

which reduce S* to canonical form when c = +I and c = -i, re-

spectively. We shall refer to the transformation from the x's to

the y's as (SA). The inverse of (5A) is given by
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Xl= Yl

i kYl _
x2= _ [e _y2_ i)-i] (6)

and the transformation which gives the z's in terms of the y's

can easily be found to be

Zl= -Yl

_Yl([y2+ _Ylz2= -[i + e l]e -2)] (7)

It is easy to see that the controllable region in the (Xl,X2)-

space for system S* does not consist of the whole of phase-space,

1 (Fig. 1).but only of the strip I_21<

strip cannot be controlled with Icl % 1.

FIGURE i

Points lying outside this
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D

The line x2= _ kl is mapped by (5A) onto the line Y2= -i.

i -XYl

The line x2= _ is mapped by (5A) onto the curve y2= 2e -i.

The origin is mapped into the origin. Hence the shaded region of

Fig. i is mapped onto the shaded region in Fig. 2. This, then, is

the controllable region in the (yl,Y2)-plane.

_I -XYl

2e -1

FIGURE 2

D
The switching curve for system S* is made up of two leaves

given, respectively, by

RII: Yl < O, Y2 = 0

RI2: zI < O, z2 = 0
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The equations of RI2 , when written in terms of the y's, take

the form

RI2: Yl _ O, e_Yl(_y2+ _Yl-El+ l_e -2)J= 0

or

Yl _ O, e2kYl(y2+ l)-2e kyl + i = 0 (8)

XY I
Solving for e yields

i +Y2

Clearly

Fig. 2 that on RI2 we must have Y2 _ -i

is to lie within the controllable region.

RI2" i

-i < Y2 < 0 then ly212 > ly21If

Y2 must satisfy Y2 < O. On the other hand we see from

if the leaf in question

Thus -i < Y2 < 0 on

whence

i

1 1 fy212
1 +Y2 - 1- ly21
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kY I

However, Yl > 0 on RI2, which implies that e

It follows that the proper leaf is given by

> i on El2.

RI2: Yl > O_

1

1 1+ ly2J2 l

e - 1 +Y2 I - ly21 - )_
ii ('Y2

or equivalently

-2XY I -XY I

RI2: Yl > 0o, y2 = -e + 2e - I
(9)

On RI2 we thus have

-kY I -kY I d2y2

Yl > O_ dY2 - 2ke (e -1)3 2

dYl dy I

2 -kYl
- 2k e (l-2e

Hence on RI2 , Y2 is a monotonically decreasing function, y_(O) = O,

(Yl "y_ ) _0 as Yl_CO_ Y2 is negative in a neighborhood of the

log2 It
origin, positive for Yl large enough and zero at Yl- k "

follows that the leaf R12 has the aspect depicted in Fig. 3- The

situation in the (Zl,Z2)-plane is identical except for the fact

that El2 would be replaced by Ell and vice versa and that the

sign of c in corresponding regions would be reversed.
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ii

FIGURE 3

Let

then either

Suppose

Fig. 3 that

P(Xl,X2) be an arbitrary point in phase space. If Xl/ 0

el(Xl) : i or el(Xl): -1.

el: i. Then xI < O, whence Yl < O. It follows from

e = + i if Y2 < 0 and e = - i if Y2 > O. Thus

el: i ->

Y2 < 0 _--> e : + i [

_Y2 > 0 :> e : - I ]
=> e : sgn(-Y2 ) (i0)

Suppose el: - i. Then zI < O. Hence

z2 < 0
el: -i

z2 < 0

:> e : -i J
t 6 sgn z2

=> e : + i ]

(li)

-56-



Let

-_kx I

h2(x 1,x2,_) = -9 + e (kx 2+ 9) (12)

then clearly

h2(Xl,X2,+ 1) = y2_ h2(Xl,X2,-1 ) = -z 2

Define

_*(Xl.,X2) = --h2(x 1,,x2_,c 1) (13)

then clearly

c2(Xl,X2) = sgn o* (14)

is a time-optimal control function for the system S*.

For a more complete exposition of the phase portrait of the tra-

jectories in the controllable region in the (yl,Y2)-plane the reader

is referred to the Appendix to this chapter. This detailed phase-

portrait, while of some interest in itself, is unnecessary for the

discussion which follows.
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The auxiliary variables for system S are given by

Vol. i, p. 107)

(FPR,

D

Yl = xI

-kx I

y2 = - i + e (kx2+ i)

y3 = 1 + e_Xl(k_ - i)

zl= -x I

kx I

z2= -(l + e (kx2-1))

-kx I

z3= -(-i + e (k_+ l))

(i5)

Let

-_kx I

h2(Xl,X2,_%h) = -B+e (Lx2+ _) = h2(xl,x2'h) as given previously

by (12), and (16)

Bkx I

h3(Xl_X2_X3_) = _ + e (kx3-_)

Then clearly

x • I ) Yi _hi(Xl_ 2'_' + =

hi(Xl,X2,X3_ - i)=-z i,

i : 2,3

i = 2,3
(z7)

Define
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% (xl,x2,_)= c2(x1,x2),

_2(Xl,X2,_)= h2(Xl,X2,_%), (18)

_3(Xl'X2_X3) = h3(_l'X2'X3__l)

Following the procedure developed in Chapter 14 we note that

(Xl,X2) are functions of (yl,Y2) and that therefore e2(Xl_X2)

can be viewed as a function defined in the (yl,Y2)-planeo Let Z*

be that subset in the controllable region in the (yl,Y2)-plane for

which e2= + i. The set 7.* is the horizontally shaded region in

Fig. 3. We denote the

tesian product Z* × Y_.

y3-axis by Y3 and define Z as the Car-

Consider the leaves R21 and R22 of the

two-dimensional switching surface of the system S as imbedded in

the (yl,Y2,Y3)-space. It was proved in Chapter 14 that Z contains

the leaf R22_ is divided by it into _wo distinct parts and does

not intersect the other leaf. Furthermore_ the leaf R22 is

parallel to the Yl-axis.

In a completely analogous fashion we note that (Xl,X2) are

functions of (Zl, Z2) and that therefore e2 is defined in the

(Zl, Z2)-piane. Let Z** be the set of points in the (Zl, Z2)-plane

for which e2= -I_ let Z3 designate the z3 -axis and let

-59-



Z_ = Z** × Z3. Consider the leaves R21 and R22 as imbedded in

the (Zl, Z2, Z3)-space. Then Z' contains the leaf R21 , is

divided by it into two parts and does not intersect the other leaf.

Furthermore, R21 is parallel to the zl-axis. Finally we note

for future reference that the equations and inequalities which de_-

fine R22 in the space of y's are identical with the equations and

inequalities which define R21 in the space of z's except for the

interchange of y's by z's and vice versa. The last assetion follows

from the fact that the transformation from the y's to the z's is

involutory and can also be seen directly for this special system by

referring to FP_, Vol. i, pp. 109-110.

R22 is defined in the space of y's by (FI_R, Vol. i,The leaf

p. II0)

R22:

r _Yl Y2-Y_'YJ_
_2

2 + 2Y23+Y2Y3Y2_ 0 (19)

(y3_y2+Y2Y3)2+ 4y#3:o.

If P(yl,Y2_Y3) c R22CZ then (yl,Y2) e Z* whence -i _ Y2 _ 0.

Solving the last equation in (19) for Y3 yields two branches,

I II

Y3 and Y3 ' in the (y2,y 3)-plane, whose equations are given by
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I

2 2
Y2 Y2+ 92 _ Y2 Y22(-Y2)3/2

(i+ y2)2 (l+ y2)2
(20)

II 2 2 2(_y2)3/2Y2 -Y2- 2Y2 -_Y2 Y2 - Y2 +

(1 + y2 )2 (t + y2 )2

1

= (-y2)2 . As Y2 ranges from 0 toLet

0 to i. Moreover, d_/dY2= -i/2_ and

I _ _2 II _ _2

Y3 - (z + _)2 _ Y3 - (z - _)2

(2:]_)

-i, _ ranges from

Hence

dY2 - (z + _)3 ; d-y2

1

(]_ _ _)3

and

2 1 _2 II

dY3 _3 ;

2 2_(1 _)4 2
dy 2 + dy 2

Thus
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II
y_(O) = Y3 (0) = O_

I 1 II

y3 _ and Y3 _+ co as y2 _-i

dY2 I y2= 0 dy 2 y2 = 0
= -1

dy 2 - _ as Y2 -_ -i_ dY2
"-_ -QO

as Y2 -+- i

d 2 1 _2 II

Q Y3 <0_ aY3 >0

d 2 2
Y2 dY2

for all

A geometric representation of y_

y2_(-1, o)

II

and Y3 is given in Figure 4.

I
-_.!

I
t
I
I

o\

FIGURE 4
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The leaf R22 satisfies the inequality (see (19))

y2(y3+y2y3+y2)< 0 (22)

However, since Y2 < 0 on R22, (22) may be replaced by

Y3+ Y2Y3+ Y2= Y3(1 + Y2) + Y2> 0 (23)

I
On the leaf .v_ we have

_D

_2 _ (o,1)
y_(1 + y2 ) + y2 = (1 + _)2 (1-'_2)-'_2 < O, _ e=-i+_

Hence y_ is a spurious branch. The proper branch is given by y_l

_et f(y2,,y3)= [y3(l+Y2)-Y2]2+ 4Y2Y3

=y_(1+y2)2 +_2(1-y2%+y_ (24)

I II
Then f vanishes on y_ and y= . Moreover,

D

_f

_3 - 2y3(1 + y2)2 + _2(1-y2)'

whence
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_fl -4(-Y2)3/2
_Y3 I = <0Y3

_'1_ )3/2

_(-½_o)--¼>o

Hence sgn f(y2,Y3) and sgn(-f) are as shown in Fig. 5-

Sgn f

I \

I

I
I

Sgn(-f)

FIGURE 5
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I
Finally, sgn[-f(y2,y 3) • (Y3- Y3)]

Projection of R
22

in (y2,Y3)-space

is displayed in Fig. 6.

sgn[-f. (Y3- Y3)] = sgn[-F(Y2,Y3) ]

FIGURE6

sgn[-f'(y 3- y_)] assigns opposite signs onThus_ the function

the two sides of the switching surface within the set E. Therefore

it (or its negative) could serve as a switching function within the

set Z. All that remains is to check the validity of this function

for a single point within Z. We shall assumefor the momentthat

-65-



sgn[-f(Y2'Y3) " (Y3" Y3 )] is indeed a correct switching function

within the set Z (more exactly, within that part of the controllable

region which lies in Z).

Let f(y2,Y3) • (Y3- Y3 ) = F(Y2'Y3)" Then the Switching func-

tionwithin Z is simply sgn(-F(Y2,Y3) ).

It follows by complete analogy that the switching function within

_' is sgn(F(z2, z3) ). We take sgn F rather than sgn(-F) in order

to account for the fact that the value of c in corresponding regions

of Z and Z' is reversed (Fig. 7)-

FIGURE 7
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Therefore, by (24) and (20),

(2.5)

_'(Y2'Y3) ---_[Y3(l + Y2) -y2]2 + {y2y3_. (Y3- y_- Y2- 2(-y2P/2.-.--..._..._

(l + y2) 2 -5

whence

(26)

F(z2'z3) = _[z3(1 + "2) -_212+ _zsz3} • f"3
2

zs- _5- 2(-z5)3/5

(J. + z5)5

Clearly (57)

F(_.5,_3) = {[-(-z3)0_(_z2))+ (-_.5)]2

+ _(-z5)(-_3)} " f-(-_.3) - (-z2)2 + (,"2) -a(-_.2)3/5

(1_(_z2))2 -----_}
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and therefore

F(z2,z3) a(z2, z3), (29)

where

a(_2,_3) = [[-_3(1-_2)+ _12 + 4_2_3_

2 3/2

[-_3- ]
(l-_2)2

(3o)

It is obvious from the above discussion that sgn G(-z2,-z3)

is a control function within the controllable region contained in

_'.

The reader can now easily convince himself that a control func-

tion throughout the controllable part of phase space (except for a

set of three-dimensional measure zero) is given by

6 = sgn _ where

= -(i+ al)F(_2,_3)+ (i-_1)a(_2,_3). (31)

It seems helpful at this stage to list together the definitions

of all the components which enter into the definition of o. They

are:
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_i= _gn(-xl)

-_x I(_x2+ _h2(xl,x2;_)= - _ + e )

h3(Xl,X2,X3%_]) : q + eBkXl(kx3_q )

e2(xi,x2) = -sgn h2(Xl,X2, Ci)

°i(xi'x2'_)= c2(xi'x2)

o2(xl,x2,x3)= h2(5,x2 oi)

o3(xi,_2,5)= 5(xl,x2,x3;%)

F(_2'_3)= {[_3(_ + _2)-_2]2+4_2_3]" {_3 -
(i + _2)2

G(_'2'_3) = [[-_3 (1-_'2) + _'212+ 4_2_3] " [-_3-

2 ._2_2._3/2_2 +

(i - _2 )2

o" = -(1 + o'1)F(o'2,0"3) + (1-o'1)G(o-2,o-3)

e = _E3(Xl,X2,X3) = sgn o'.

The proof above was based on the assumption that sgn[-f(y2,y 3) -

(Y3- Y_)] was the correct switching function within the set Z,

rather than sgn[ + f(y2,y3) • (Y3- Y3 )]" Thus, up until now, the
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switching function is undetermined as to sign. This sign could be

determined experimentally by simulating the system for just one set

of initial values. We can also show mathematically that the sign re-

sulting from the above assumption is indeed correct. This is done

as follows:

Consider an arbitrary trajectory which meets R22. Suppose its

first point of intersection with R22 is P, where P in an in-

terior point of R22. Just after reaching P the value of e is

+ 1. Since the value of ¢ must switch from -1 to + l, or vice

versa, at points where a trajectory first meets a switching manifold,

the value of e must have been -1 just before the trajectory

reached P. Hence, if sgn[± f(y2,Y3)-(y3-y_)] is the true switching

function in the set _, the _ sign must be determined so that

f(y2,y3) is negative just before the trajectory reaches P. In

II I

making this assertion, we also use the fact that Y3 >Y3 "

From the fact that f(y2,Y3) = 0 a__t P, we thus see that

must be determined in such a way that

dtd[+_f(y2,y3)1 O, (32)

where the differentiation is carried out along the trajectory (with
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c = -i) through P and evaluated at P. Nowthe equations of

motion (for _ = -1) when expressed in terms of the y's are as

follows:

dY1
-- = -i
dt

dY2 -kYI
dt - -2ke + 2k(Y2+ I) (33)

= _ 2kekYl
dt - 2x(y3- l)

The reader may verify these equations by differentiating the equa-

tions (2.6) on p. 108 of Vol. 1 of FPR and reducing the result with

equations (2.4) and (2.5) on p. 107 of same.

We thus have

[+f(y2,y3)]: +[_f dY2+ _ ] (34)
dt - - _Y2 dt _Y3 dt

where the values of dyJdt and dY3/dt are obtainable from (33).

We need to carry out our argument for only one particular point P

on R22. A convenient choice for P is yl = 0, y2 = - ¼, y3 = 1.

It is easily seen that this point does indeed lie on R22 , for it

satisfies the two inequalities and the single equality characteristic
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of R22. Since f(y2,Y3) = (y3_y2+ Y2Y3)2 + 4Y2Y3, a short calcula-

tion shows that at P

8f 8f 1
4 and __

_2 2

while, from (33), we find that at P

dY2 i dY3 -2k
dt - - _k , and dt =

Hence, from (34), we obtain

_[+ f(y2,y3)]p= + [_(-_x)+ (-2x)]: T 3_.

But since k > O, we see at once that (32) can be satisfied only if

¥ = +, or, in other words, only if _+ = -_ as we wished to show.

2. Appendix to _i.

The

The Phase-Portrait Of System (2) In The Controllable Region Of

(Yl,Y2)-Plane.

In the region Z*, where c2= + i, all trajectories are parallel

to the Yl-axis. In the complementary region, where c2= -i, the
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trajectories form curves whoseequations are given by:

- kYl(y 2 -kYlY2= e 2 (01-i) + 2e - i (35)

Note that in (35) the time t has been eliminated_ the argument

in Y2(0) is Yl' not t.

In that part of the controllable region where e2= -1, we have

0 < Y2(0) < 1 (Fig. 3). Let 1-Y2(O) = _. Then 0 < _ < 1 and

dY2 - 2ke be -1].-kYl[ -kY1
dY1

-kY1
The function g(yl) = _e

It has exactly one zero at

-i is monotonically decreasing.

1
log 

It is easy to see that Y_I < O, Y_I _ -co as

Y2 (0) -_i) and Y_l -_0 as _ -_l (i.e., as

-_0 (i.e., as

y2(0) -_ 0). Moreover,

d2y2 2 -kYl _ -kYl],
2 - 2k e [I-_

dY I
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d 2 i d 2
so that Y_ Yl is monotonically increasing and has exactly one

zero at

= I log 2_ _ log 2.Y_ k =Y_l +I

It follows that Y_l is a point of relative maximum while ly_ is a

point of inflection.

To find the point of intersection of a given trajectory with

Rll , substitute y2 = 0 in (35)- One gets

1 _+Jy2(o) 1

1 - y2(o) i ;y_2(o)

However, since Yl < 0 at the point of intersection, we must have

-kY I

e > i at that point. Therefore, the point (y_ , O) at which

the given trajectory intersects RII is given by

!

-kYl i
e

l-Jy2(o)

Clearly Yl-,-co as Y2(O)-,l and y_ -,0 as Y2(O)_0. The
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complete phase portrait is displayed in Fig. 8.

m m _ m m m _

FIGURE 8
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CHAPTER 16

ON A CONTROL FUNCTION FOR CONTROLI_ LINEAR

SYSTEMS WITH FOUR ZERO EIGENVALUES
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i. Preliminaries

We have spent considerable effort in attacking the problem of

optimal control for controllable fourth order systems having eigen-

values O,O,k, -k. The case k / 0 appears to be quite difficult

though not hopeless. In order to gain experience, we have considered

the case k = 0. Here our general method requires the analysis of

the three-dimensional switching manifold given by (31) of FPR,

Vol. l, p. 33. In particular it is necessary to study the last equa-

tion of this chapter, which, for convenience, we reproduce here.

24 2 88 4
288(72Y2Y 4 - 48y2Y3_ 4 *

+ 0 6 2 2 4 425Y_2Y3Y 4 8 8- 3 YZ43 7Y2Y 4 - 744Y2Y3Y 4 (1.1)

44 72 i0
+ 192Y2 y6) + lo(2581Y2Y 3 + 443Y2Y 3) + 361y 2 = O.

We are particularly interested in studying the manner in which this

equation defines Y4 as a function of Y2 and Y3"

The equation is seen to be homogeneous of weight 20 in the y's

if Y2 is given weight two, Y3 weight three, and Y4 weight four.

Hence we may obtain a more convenient form of the equation_ if we

set
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and _ = 4y2
12y 4

Y2

, (1.2)

where we have introduced the numerical constants 12 and 4 because

they seem to make the resulting equation have smaller coefficients.

i0
If we divide (i.i) by Y2 and introduce the notation defined by

(1.2), we find that (i.I) is equivalent(when yJ O) to

_4-(2_ + 48)_3 + (436_ + 614)_2 - (1,116_2 + 2,55o_ + 912)_

+(864_ 3 + 2,581_ 2 + 1,772_ + 361) = 0 (1.3)

and our problem thus reduces to the study of the four roots of the

fourth degree equation (1.3) in _ as functions of _.

We rewrite equation (1.3) in the form

_@ - a_ 3 + b_ 2 - c_ + d = O, (1.4)

where

b : 436_ + 614

c : i,I16_ 2 + 2,550_ + 912

d : 864_3÷ 2,581_ 2 + 1,772_ + 361.

(I.))
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We started out with the conjecture that equation (1.3), except

for _ = 0, always has just two distinct real roots. A well known

necessary and sufficient condition that a quartic such as (1.4) have

just two distinct real roots is that its discriminant A be always

negative. _ may be writtendown in various ways. For instance,

i -a b -c d 0 0

0 i -a b -c d 0

0 0 i -a b -c d

4 -3a 2b -c 0 0 0

0 4 -3a 2b -c 0 0

0 0 4 -3a 2b -c 0

0 0 0 4 -3a 2b -c

A

A = -27a4d 2 + 18a3bcd - 4a3c 3 - 4a2b3d + a2b2c2 + 144a2bd 2 - 6a2c2d

-80ab2cd + 18abc 3 - 192acd 2 + 16b4d _ 463c 2 _ 12862d 2 + 144bc2d

-27c4 + 256d3.

1 8 2 a2d)2Z_ = 4( 2 _ ac + 4d)3 _ 27(- 3 + 3 abc + _ bd - c - .

Hence the question can be settled definitely in one way or another

by substituting (for a,b,c,d, in any of these formulas for A) the
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expressions given by (1.5) and thus obtaining A = A(_) as a poly-

nomial in _ . If our conjecture were true, the equation A(_) = 0

should have had no real roots, except for a double root _ = O,

and _(_) should have been negative for all real _ / 0. This 3

however, is not quite the case, as will be shown in the following

section. The calculation of A(_) was carried out by G. Campbell

whose fortitude won our unqualified admiration, for the task turned

out to be extremely laborious. It took some time to obtain A(_) in

a form free from error as indicated by a system of various checks.

In the meantime we managed to run up several blind alleys. These

are indicated below for the sake of completeness.

First, it is clear from the third formula given above for A

that a sufficient condition that A < 0 is that _2 _ ac + 4d < 0.

compute --_ib2- ac + 4d in terms of _ than it
It is much easier to

is to compute the full expression for A. It turns out to be a cubic

polynomial in _ which vanishes when _ = -4.46 approximately and

which is negative when _ <-4.46. Hence equation (1.3) does have

exactly two real distinct roots for _ < -4.46.

Second, it is obvious geometrically that (1.3) cannot have more

than two real roots if the left member of (1.3) is a convex function
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of _, i.e., if its secondderivative 12_2 6a_ + 2b never changes

sign. This will be the case if the discriminant of the quadratic

function 6_2 - 3a_ + b is negative, i.e., if 9a2 - 24b < 0 or

3a2 - 8b < O. This is found to be satisfied for values of _ be-

tween approximately -7 and 241.9.

Third, we carried out a machine calculation of the roots of (1)

for all even integral values of _ from -500 to + 500_ and it was

found that in each case (except for _ = 0, of course)there

were exactly 2 real roots and 2 complex roots.

None of these observations yielded sufficient information.

2. Study Of The E_uation For The Three-Dimensional Switchin 5 Mani-

fold For The System Xl = _' x2 = Xl' % = x2' x4 = _"

The equation referred to in the section title is equation (i.i)

of the present chapter. This equation was reduced by means of the

substitution (1.2) to the somewhat more tractable form (I.3). Our

problem thus reduces at first to the study of the four roots of the

fourth degree equation (1.3) in _ as functions of _ .

When _ = O, the left member of equation (1.3) may be written

as a perfect square (_2_ 24_ + 19) 2 . Hence for _ = O, (i.3)
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admits two pairs of double roots 12 Z9_9 all four roots being real.

As mentioned above, we conjectured at first that equation (1.3)

would admit just two real roots and a pair of conjugate complex roots.

This conjecture was supported by someelaborate numerical computa-

tions carried out on a computer and also by sometheoretical work

which proved that (1.3) actually does have just two real roots and

a pair of conjugate complexroots as long as _ was restricted to

certain specified intervals. Wenow know, however, that the conjec-

ture is false if and only if -4 _ _ & -100/27 = -3.70370370....

Wealso know that the curve whose equation is (1.3) has cusps at the

points _ =-4, _ =-7, and _ =-100/27, _ =-19/3 and that the

curve also has a double point at _ = -129/32, _ = -27/4. On the

open interval -4 < _ < - 125/32, equation (1.3) has four distinct

real roots_ three negative roots and one positive root. The same is

true for the open interval -125/32 < _ < -100/27. Notice, however,

that the whole interval -4 _ _ & -100/27 where our conjecture

turns out to be false is very short. Indeed its overall length is

only 8/27.

These facts were discovered and established with the help of the

discriminant



A(_) = -27a4d2 + 18a3bcd 4a3c3 - 4a_3d + a_2c 2 + 144a2bd2

_ 6a2c2d _ 80ab2cd + 18abc3 _ 192acd2 + 16b4d _ 4b3c2

_ 128b2d2 + 144bc2d - 27c4 + 256d3, (2.1)

which has already been introduced above. Here a,b,c,d, are the

sameas in (1.5)

A necessary and sufficient condition that (1.4) have just two

real distinct roots is that _ < 0 and it is also well knownthat

vanishes if and only if (1.4) has a multiple root. Hencewe

calculated A as a polynomial in _ by substituting in (2.1) the

values of a,b,c,d given by (1.5). _ must, of course, vanish at

= 0 to the second order because, as we have already pointed out,

for _ = 0 our equation (1.3) has two double roots. Hencewe are

justified in writing _ in the form

A = -_2F(_) (2.2)

It required a very stupendous calculation to find the polynomial

F(_). But we eventually found that
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F(_) = 322, 486, _72_ 8 + 9,972,440,064_ 7 + 134,895,988,656_ 6

+ 1,042,527,831,808_ 5 + 5,034,853,427,200_ 4

+ 15,559,336,960,000_ 3 + 30,047,296,000,000_ 2

+ 33,152,000,000,000_ + 16,000,O00,000,000

After still more harrowing adventures we found that

be factored into linear factors. Namely,

F(_) = 16t3(32t - 3)2(27t-8_

(2.3)

F(_) could

(2.4)

where

t -- _ + 4 (2.5)

That is_

FC_)= 16(_+ 4)3(52_ + 125)2(27_+ lOO)3 (2.6)

It seems undesirable to burden the reader with the many details

leading to the discovery of the factorization of F as exhibited

in (2.4) or (2.6)° It is indeed burdensome for him to verify the

correctness of (2.6) a posteriori by multiplying out the factors but

not as much so as a detailed discussion would be as to how the
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factors were discovered in the first place.

It is seen immediately from (2.6) that (1.3) has multiple roots

lO0

when _ = -4, _ = - _ _ = - _ These multiple roots all
' 27

turn out to be double roots and they are, respectivel_ _ = -7,

= - 274 , and _ = -
19

3

In order to verify these facts it is desirable to use (2.5)

and the further substitution

k = 7 + [ - 2_t (2.7)

to write (1.3) in the somewhat simpler form

k4 + (8t-68)k 3 + (4_2t2 - 32t + 4)k 2 + (25 t3 - t2)k

f125 t 4 t3
+ _ 16 - )=0 (2.8)

Incidentally, by neglecting all terms in (2.8), except those of

l_t3 + which shows that the
lowest order, we obtain k = _ _ ...,

curve whose equation is given by (2.8) has a cusp at the origin.

This corresponds to a cusp at [ = -4, [ = -7 in the curve whose

i00

equation is (1.3). The latter curve also has a cusp at _ = - -_ ,

19
= - 3 ' as it would be possible to establish in a similar manner.

But this fact can also be deduced more readily by inspection of (2.6).



Details are left to the reader.

In order to study the curve given by (1.3) for large values of

and _ it maybe noticed that the left hand side of (1.3) is

almost divisible by _ -2_ -1. In fact_ if we attempt to carry

out such a division we get a quotient

and a remainder

- (432_2 + 1,074_ + 3_)

(2.9)

R(_)= (_+4)2 (2.1o)

Hence, if the left member of (1.3)is denotedby F(_,_),

F(_) = Q(_,_)(_2_ _l) + (_ + 4) 2

we have

(2.11)

Thus at any point on the straight line _ = 2_ + i, or on the curve

whose equation is Q(_,() = 0, we must have F(_,_) = (_ + 4) 2 _ 0_

with the equality sign holding if and only if _ = -4. It follows

that for those values of ( where the equation (1.3) has just two

real distinct roots (which it does except for -4 _ _ _ - 100/27

and for _ = O) the points of the curve F(_) = 0 must all lie

either completely below the straight line _ = 2_ + i, as in the



case for _ > O, or completely above the straight line _ = 2_ + I,

as in the case for _ < -4. A similar statement maybe madewith

regard to the curve Q(_,_) = O. But it is best to confine atten-

tion not only to those values of _ for which F(_,_) = 0 has

just two real roots but also for those values of

cubic Q(_,_) = 0

curve Q(_,_) = 0

quadratic in _.

for which the

has just one real root. It is easy to plot the

because_ although it is cubic in _ it is only

Thus we may use the quadratic formula to solve

for _ in terms of _. The result is

1 _ (2.12)- 144 [57_-179 +

where p(_) = _3 + 993_2 + 6810_ + 15481. Since p(_) = 0 has

three roots at approxi_tely _ = -7.8, -6.9, and -6.0_ we see

that the curve Q(_) = 0 consists of a "main" branch (reaching

from a point where _ = -6.0, approximately_ to points where

_ + oo) and of an isolated tiny oval (extending from a point where

= -7.8 to a point where _ = -6.9 approxinmtely). If we restrict

attention to values of _ < -5 or > ÷ I_ we not only eliminate all

necessity for considering this little oval_ but we also eliminate the

points near _ = 0 where the equation Q(_) = 0 has three instead

of only one real root. See figure 2.3
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For _ > I, then_ the curve F(_,_) = 0 lies completely

above the curve Q(_,_) = O. For _ < -5, the curve F(_,_) = 0

lies completely below the curve Q(_,_) = O.

In order to get the somewhat more exact information needed in

the next section we must refine the above argument to a certain ex-

tent. What we now do is to divide F(_,_) by (_ - 2_ - i -o )

thus obtaining a quotient

Q(_,_;o) = _3+ (o_47)_2+ [(o2_46o + 567) + (2o + 342)_]_

+ [(J- 4502+ 5210-345) + (4o2+ 2520-i074)_ + (4o - 432)_ 2]

(2.13)

and a remainder

R(_,o) - (_ +4) 2 + o[8_ 3 + (12o + 76)_ 2 + (6o 2 + 166o + 220)_

+ (2- 44o 2+ 476o + 176)] (2.14)

so that

F(_,_) = Q(_,_;o)(_ - 2_ - 1 -o) + R(_,o) (2.15)

-88-



It is to be observed that (2.11) is a special case of (2.15) with

0=0.

It is also important to observe that although R(_,O) is al-

ways positive_ it is also possible to nmke R(_ o) negative

for sufficiently large I_l simply by choosing the sign of o to

be opposite to the sign of _. This is because the term of highest

order in the expression for R(_ o) is 8q_ 3 . Thus, for every

c > O, it is possible to choose o such that 1oi < c and such

that R(_ o) is negative for _ sufficiently large in absolute

value and with the proper sign. If for such a _ we choose a point

(_l,_) which lies on either the straight line _ = 2_ + 1 + o or

on the curve Q(_,_) = O, we must have

whereas, of course, if the point

line _ = 2_ + 1 or on the curve

F(_o,_) = R(_O) > O. Hence there must be a number _ between _o

and _l such that F(_,_) = 0, that is, such that the point

(_,_) lies on the curve F(_,_) = 0. This amounts to saying that

for _ sufficiently large in absolute value and with proper sign

there is a branch of the curve F(_,_) = 0 which lies between the

two straight lines _ = 2_ + 1 and _ = 2_ + 1 + o and also a

: < O,

(_o,_) lies on either the straight

Q(_,_o) = O, we must have



branch of the curve F(_,_) = 0 which lies between the two cubics

Q(_,_) = 0 and Q(_,_)=0.

In the former case, as l_I so o, we have _l- 2_ = 1 + c and

_o - 2_ = 1. Since I_l maybe taken arbitrarily small, this means

that _ - 2_ _i as the point

branch of the curve F(_, _) = 0,

lines.

(_,_) recedes indefinitely along the

which lies between these two straight

In the latter case, when (_I,_) and (_o,_) are points of

Q(_,_) = 0 and Q(_,_) = _ respectively, we see from (1.14) that

lim ___ _/-3

_ + oo _o3_ = + 36

Wealso have an equation like (2.12) which applies to Q(_,_,o) = 0

instead of to Q(_,_0) = 0 and which can be written downwhenwe

solve the equation Q(_,_) = 0 for _ in terms of _ by use of

the quadratic formula. Weare thus enabled to prove that

lim _ = + i

 13/2 - 2

Taking

a branch of the curve

to be positive and o to be negative and remembering that

F(_,_) = 0 lies above the curve Q(_,_) O) = 0
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and (for sufficiently large _) below the curve q(_,_;o) = O, so

that

D
we see that, on this branch of the curve F(_,_) = O,

lira sup 3_2 < lim 3_2 Vr3 (2.16)
-_ao = _ -_oo to - 36

and that

lim

lim inf >

_. = i

Since this last relation holds for all negative o_ we find, by

letting o approach zero, that

lirainf _ m lim 1 _3 (2.17)
_.oo _/_ _*0 2 14_-o 36
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limHence, from (2.16) and (2.17), we see that

and is equal to
36 "

Similarly, by taking _ to be negative and

exists

positive, we

can show that on another branch of the curve F(_,_) = O, we have

FIGURE2.1
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This figure (2.1) illustrates the main features of the curve

whose equation is (1.3). The scale on the two axes is, however,

slightly distorted so as to make the picture reasonably artistic.

Actually the straight lin% which is an asymptote to two branches

of the curve, should have slope 2 instead of I. The detailed be-

havior of the curve near the point A, whose coordinates are

(_ = -7_ _ = -4), can not be depicted on such a small scale. It

is shown in Figure 2.2

FIGURE 2.2

This figure illustrates the cusps at the points A and B and
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the double point at C. The straight line segment marked L repre-

sents a small piece of the straight line in Figure 2.1_ also marked

L . The three points A_B,C are extremely close to each other on

the scale of Figure 2.1.

L

¢

FIGURE 2.3

This figure illustrates the curve Q(_,_) = O, and the straight

line _ = 2_ + 1 marked L, to which the curve F(_,_) = 0, shown

in Figures 2.1 and 2.2 is asymptotic. Notice the little oval near

the point A. No attempt is made to maintain a thoroughly consistent
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scale.

3- Identification Of The Proper Leaf R31

Our object is to obtain a closed form control law for the

system

s4: _l= c, _2 =xl' _ = x2' _4 =x3' c =Z1.

In Chapter 14 we outlined a general scheme for the solution of this

type of problem. The procedure, as applied to the present problem,

may be summarized as follows:

Consider the system

$3: Xl = c, x2 = Xl' _ = x2' _ = _ i

D

and assume that a closed form control law c = _3(x) for the system

S3 is known (it _s -- see Chapter 13). Associated with the system

S4 are two sets of auxiliary variables (yl,Y2,Y3,Y4) and

(Zl, Z2, Z3,z4) defined in accordance with our general theory (Chapters

i and 4 in Vol. i). We assume that (yl,Y2,Y3,Y4) and (Zl, Z2_Z3JZ4)

are so chosen that (yl,y2,y3) and (Zl, Z2, Z3) form an appropriate

set of auxiliary variables for the system S3.
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The transformation from the space of (Xl,X2,X3) to the space

of (yl,Y2,Y3) is well defined n and, in fact, invertible m in

a neighborhood of the origin. The function c3(x ) may therefore

be regarded as a function of (yl,Y2_Y3) in a neighborhood of the

origin of the space of (yl,Y2_Y3). Let Z* be the set of all

those points in the space of (yl,Y2,Y3) at which the function c3

takes on the value of + I. Let Z be the subset of the space of

(yl,Y2_Y3,Y4) obtained by taking the Cartesian product of Z* with

the Y4-axis. Denoting the Y4-axis by Y4' the set Z may be re-

presented symbolically by Z* × Y4"

The switching surface of system S4 is a three-dimensional

manifold denoted by _. It is composed of two leaves, _i and

_2' in accordance with our general theory (see Chapter i, Vol. i).

We have shown (see Chapter 14) that _i' when imbedded in the space

of (yl,Y2,Y3_Y4) be means of the transformation which carries the

x's into the y's _ is wholly contained within the set Z. The

leaf _i' when so imbedded, has the following properties: (i) it

is a cylindrical surface, parallel to the Yl-axis; (2) it separates

r into two distinct parts; (3) its boundary lies on the boundary of

Z. In the sequel, R31 will always be conceived of as imbedded in
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the set E.

The crux of our method consists in the fact that a closed con-

trol law for the system S4 can always be derived from a control

law valid solely in the set E. It is therefore sufficient to re-

strict one's attention to the set E and ignore the remainder of

phase space. Within E the problem reduces somewhat further. Find-

ing a control function in Z is equivalent to finding a function

F(Yl,Y2,Y3,Y4) , defined throughout Z, which is positive on one

side of _I and negative on the other. We attempt to construct a

function F by making use of the equation and inequalities defining

_i" However, since _i is parallel to the Yl-axis, the function

F(Yl,Y2,Y3_Y4) must necessarily be independent of YI" In other

words_ it is sufficient to restrict one's attention to the projections

of Z and _i into the space of (y2,Y3,Y4). We denote these pro-

Z P
_i _ respectively. Our problem_ then_ is to

jections by and

construct a function F(Y2,Y3,Y4) _ defined throughout Z P, which

is positive on one side of R_ and negative on the other.
i

But first we must make an exact identification of the proper

leaf _i' or, which is the same, the proper projection _I " This

identification will be pursued throughout the remainder of the present

section.
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The leaf _i is characterized by one equation and three in-

equalities. These have been computed before (FFR, Vol. i, PP-33-34).

We repeat them here for the sake of convenience:

E<O

B

__.R31: Yl < A

AD-BC = O_

where

(3.1)

A = 12hj3[-15y32 + 140y2y 4 - 96y_]

- - 6 2

B 2

y2+ (X)

62 24 _ 88
+ 307Y2Y 4 - 744Y2Y3Y 4 - 425y5y2y 3 Y2Y4234

2 6 16(2_ly4y_ 7 2 lO
+ 19 y2Y3) + 2 _ + 443Y2Y3 ) + 361Y2
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B
The inequality E < - _ may be simplified as follows:

One has

B

E +_<0,

whence

_ _ I__
2

y2+ (_)

+ (_)< o

Therefore

_-_(_- (_+ _(_ +(_
2

y2+ (_)

<0

or

B 2

y2+ (_)

<0 (3.2)

The inequality E < 0 may also be simplified. One has

2

y2+ (_)

<0
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whence

y2+ (_)2 B2 (_)2 Ay2+ (_) y2+

Using (3-2) and (3.3) we may therefore replace (3.1) by

(3.3)

R31:

r_<o

h
-_<o

h

yl < -_

AD-BC = 0

(3.4)

where

Y2+ (_)2
(3.7)

D

The functions A_B,C,D and q_ are all independent of YI"

P

Hence the projection R31 is characterized by the equation

AD-BC = 0 (3.6)

and the inequalities
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cp<O

B
-_<o

where _ is as defined in (3-5).

Let _ and _ be the variables defined above, namely

4 2
1_4 Y3

Y2 Y23

and let

Y2 B
¢-

Then (3.7) becomes

y2(i +¼ ¢2) < o ,
(3.9)

whereas (3.8) becomes

Y2 1 + ¼ ¢2

¢<0

where

Y2B 2o9< * 95 - 12o_ +5_ 2 - 12_<

y3A - 3_I-l_ + _ - 2g_}
3
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We shall use (3.9), (3.10) and (3.11) to distinguish between the

proper and spurious leaves defined by (3.6).

As we already know from previous sections, equation (3.6),

when expressed in terms of _,_ gives rise to six real branches

in the (_,_) plane. We shall refer to them as branches I through VI

in accordance with Figures 2.1 and 2.2.

Lemma i. ¢(_,_) _ 2 as _ _ + co on branch I.

Proof: We know from the discussion in previous paragraphs that

[_-(2_ + i)] _ 0 as _ _ + _ on branch I. Hence, on this branch,

we have from (3.11):

lim ¢(_)= !im 2094+ 97 - 120(2_+ l) + _(2_+ l)2- 12_(2_+ l)

where Pl(_) and _(_) are polynomials of degree 1 in _. It

clearly follows that

lim
2
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along branch I.

Lemma 2. ¢(_,_) -+2 as _ _-co

Proof: The proof is the same.

on branch III.

Lemma 3- ¢(_,_) _0 as _ _+ co [_ _-oo]

Proof: It has already been shown that on branch II the value of

tends asymptotically to _ _3/2 as _

other words, on branch II,

lim _ _c3

on branch II [branch IV].

and _ tend to + _ .

We may therefore write

= (i +  3/2 (3.12)

where _ _0 as _ _+ co on branch II.

into (3.11) yields a rational function of

of degree five in _i/2 whereas its denominator is of degree six in

ii/2 Since _ _+ oo _ _ + co on branch II, the stated result

follows.

The proof for branch IV is analogous.

Substitution of (3.12)

_i/2 whose numerator is

In
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A. The case when _ > 0.

When _ > 0 one has 4y_ 2 > 0, whence Y2 > 0. Hence the

half plane _ > 0 corresponds to the half space Y2 > 0 in the

space of (y2,Y3, y4). We shall consider this half-space as divided

into two quadrants, namely (i) Y2 > 0, Y3 > 0; (ii) Y2 _ 0,

Y3 _0-

(i) Y2>°' Y3>°

> O_ whence i + _ @2 > O. Moreover_We have

Hence (3.9) is equivalent to i-¢ < 0, or simply

YJY2 >0.

> 1 (3.13)

We note, furthermore, that if Y2 > 0, Y3 > 0 and (3.13) is satis-

fied then (3.10) is automatically satisfied. It follows that in the

quadrant Y2 > O, Y3 _ 0 the two inequalities (3.9), (3.10) may be

replaced by the single inequality (3.13).

Lemma4. In the quadrant Y2 > 0_ Y3 > 0, points corresponding to

branch I with a sufficiently large _, satisfy (3.13).

Proof. Lemma i.
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Lemma >.

branch II with a sufficiently large

Proof: Lemma 3.

Theorem i. The subset of _I

Y2 >0, Y3 >0

correspond to branch I.

quadrant Y2 > 0, Y3 > 0

spurious.

In the quadrant Y2 > O, Y3 > 0, points corresponding to

_, violate (3- 13).

which lies in the quadrant

is the locus of all points (in this quadrant) which

The locus of all points, which lie in the

and which correspond to branch II, is

Proof: Every point of _i must satisfy equation (3.6) and will,

therefore, correspond to a point on one of the branches depicted

in Figure 2.1. Since Y2 > 0 in the quadrant under consideration,

is positive whence every point of R_I for which Y2 > 0 and

Y3 > 0 must either correspond to a point on branch I or to a point

on branch II. Every such point of _I will also satisfy the in-

equalities (3.7) and (3.8) or, equivalently, (3.10) and (3.11).

The last two inequalities have been shown to be equivalent, in the

quadrant Y2 > O, Y3 > O, to the single inequality (3.13). It

follows that every point of _i in the quadrant Y2 > 0, Y3 > 0

corresponds to a point on branch I, or branch II, which satisfies

(3.13).
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Conversely_ every point in the quadrant Y2 > O, Y3 > 0 which

corresponds to a point on either branch I or branch II and which

satisfies (3.13)_ lies on _i " It follows that the subset of R_I

which lies in the quadrant Y2 _ O_ Y3 _ 0 is the locus of all

points (in this quadrant) which correspond to points on the branches

I, II and which satisfy (3.13).

It is a consequence of the above remarks_ as well as Lemma l_

that the locus of all points corresponding to branch I with sufficiently

R_l . Similarly, it follows from Lemma 3large t is contained in

that the locus of all points corresponding to branch II with suffici-

ently large t is spurious.

Let Z be the set of all t > 0 such that the points (_,_i)

lying in branch I does not correspond to points (in the quadrant

> 0, Y3 > 0) which are contained in R_l Let to be theY2 least

upper bound of Z. We know from the preceding paragraph that to is

_o be the value of _ on branch I_ corresponding tofinite. Let

to •

curves.

The pair (_o_o) gives rise, in the (y2,Y3,Y4)-space to two

They are formed by the intersection of the two surfaces

0, _o >0
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and

12y4 - _oy2 = 0,

Oneof these curves lies in the quadrant Y2 > 0, Y3 < 0. The

other lies in the quadrant under consideration, namely Y2 > 0,

Y3 >O-

It is clear from the definition of (_o,_o) that the curve

_ : 4Y3- _°_2 = 0' 12Y4- {oY22= 0' Y3 > 0 (3.14)

forms an edge of _I " This edge may or may not be contained in

R_I depending on whether to c Z or _o _ Z, respectively. Re-

calling the definition of _I we must conclude that there exists

a cylindrical sheet C, parallel to the Yl-axis, whose projection

in the (y2,Y3_Y4)-space is _ , and which forms an edge of %1 "

One has:

o o o_ zP
y2,Y3,Y4) c <_>

<_---> there exists a Y_I

<_> there exists a y_

<_-> (Y2' c M,

such that

such that

(y_l,Y2_ o o

. o o _.
(Yl 'Y2' Y3 ) ¢
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where M is the unshadedregion depicted in Figure 3.1. The last

equivalence follows from the definition of Z*, as well as the

detailed investigation of the switching surface of S3 as rendered

in Chapter ll of this Final Progress Report. (The reader who wishes

to refer to that chapter should note that here we have replaced the

z's by y's throughout).

Y3 > 0 in the space of
of ZP .

It follows that the quadrant Y2 > O,

(y2,Y3,Y4) lies wholly within the interior

The value of _o was shownto be finite. Hence _ cannot

degenerate into a curve which lies in the plane Y2 = 0. In other

words, the curve _ except for the point y2= y3= y4= 0 lies

properly within the interior of ZP

If {o > 0 then

rant Y2 > O, Y3 > 0,

the interior of Z.

_ lies within the interior of the quad-

whence C is an edge of _I lying within

In Chapter 12 of this Final Progress Report it was shownthat

R3 is homeomorphicto a three-dimensional disk. _i and _2 are

joined along a commonedge which lies on the boundary of Z. In

particular, R3i cannot have an edge which lies in %heinterior of Z.

It follows that _0 > 0. H_nceevery point lying o_ branch I must

correspond (in the qnadrant Y2> O, Y3 > O) only to points which are

properly contained in RP
31"
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D

We have already shown that the locus of all points in the space

of (y2,Y3,Y4), Y2 > 0, Y3 > 0, which correspond to points on

branch II with sufficiently large _ is a spurious locus. It is

Y_

FIGURE 3 •i

now claimed that the statement holds true throughout branch II, with-

out restriction to large values of _ . The proof is analogous to

the above.

Thus _i N[_Y2'Y3_Y4)IY2 _ 0, Y3 _ 0] is the locus of all

points (y2_Y3,Y4) which lie in this quadrant and correspond to

points on branch I. All points in the quadrant Y2 _ O_ Y3 _ 0_

which correspond to points on branch II are spurious. This completes

the proof of Theorem i.

(ii) Y2_ 0, Y3< 0

P F][(y2,y3,y4)ly2 > o,y3 < o_}is theTheorem 2. The set R31
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locus of all points (Y2'Y3'Y4)' Y2 > O, Y3 < O,

to points on branch II, All points in the quadrant

which correspond to points onbranch I are spurious.

Proof:

which correspond

Y2 > 0, Y3 < o,

We note, first, from (3.11) that ¢ is a function of

alone. Hence, by Theorem I,

i-¢ i-¢

i + _ ¢2 < O, i + _ ¢2

-¢<0

throughout branch I. Thus_ if (y2,Y3,Y4) is a point in the quadrant

Y2 > 0, Y3 < 0 which corresponds to a point on branch I, it does not

(3-9), (3.10) and cannot belong to _i " This completes thesatisfy

proof of the second part of Theorem 2.

On the other hand, by Lemma 3,

i-¢ i-¢

i + _ _2 >0' i + _ ¢2

-¢ >0

for all points of branch II with _ > to for some sufficiently

large (but finite) to°

Such points, then, give rise to curves which lie in 41 in the

quadrant Y2 > O, Y3 < O. However, an argument analogous to the one

used in the proof of Theorem i eliminates the possibility that to > 0.

This completes the proof of Theorem 2.
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B. The Case When _ < 0

Investigation of this case was not complete when the present

chapter was prepared.

Note: The results discussed in the present chapter cover most of

the work entailed in the derivation of a closed control law for the

system under consideration. These results assure the possibility of

obtaining such a control law. However, a certain amount of work

remains to be done.
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CHAPTER17

ONTHECONTROLLABLELINEARSYSTEMWITH

EIGENVALUESO,O,k, -k
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0, 0, k, -k (Preliminaries)On The Linear System With Eisenvalues

Initial Computations

We consider the system

Xl = c

_2 = _x2 + c (1)

= -_x3+c , _ >0

x_ =x l

It is a linear system with eigenvalues 0_0,k,-k and one control

element. Following our standard procedure we define two sets of

auxiliary variables (yl,Y2,yy,y4)j and (Zl, Z2_Z3,Z4) as follows:

(2)

Yl = Xl

-kx I

Y2 = -I + e (kx2+ i)

kx I

y3 = 1 + e (kx3- 1 )

1 2

Y4 = x4- 2 Xl
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I

zI = -x I

+-kxI

Z2 = -l - e (kx 2- i)

-kx I

z3 :l-e (_+Z)

1 2
z4 : -(x4+_ xl)

(3)

The transformation (2) reduces system (i) to the form Yl = i,

32 = 33 = 34 = 0 when c = + i, whereas (3) reduces the system (i)

to the form _i = i, z2 = _3 = z4 = 0 when ¢ = - i. The inverse

of (2) is given by

Xl = Yl

1 kYl -

x 2 : _ [e (y2 + l)-l]

[e-_Yl(y3- l) + z]
l

x3: _

1 2
x4 : Y4 + 2 Yl

(4)

D while the inverse of (3) is
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xI = -z1

1 kz
x2 : k [-e l(z2+ l) + l] (5)

-kz1
1 [-e (z3-1)-l]x3 =

1 2

x_= - (z4+_ zi)

Equations (2) and (5) may be used to obtain the transformmtion-

from the y's to the z's, namely

yl = -zI

kZl[ kZl
y2= -l-e (z2+ l)e -2] (6)

-kZl[ -kz 1
Y3: 1-e (z 3- 1)e + 21

Y4 =- (z4+ z_)

The transformation from the y's to the z's is involutory. This

fact follows directly from our general theory (see Chapter 4, Vol. l,

FPR), or it may be checked directly from (3) and (4). The transforma-

tion from the z's to the y's is therefore given by
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D

Zl= -Yl

kY 1 kY 1

z2= -l-e [ (y2+ 1)e -2]

-kYl[ (y3-1)ez3= + 1-e -kYl + 2]

2
z4---(Y_+Yl)"

(7)

The first leaf of the one-dimensional switching curve_ denoted

i

by RII , is given by Yl < 0, y2 = y3 = y4 = 0. In terms of z these

equations become

RII:

Zl>O

kz I kzI

-l-e [(z2+ l)e -2] = 0

-kz I -kz I

+l-e [(z3-1)e + 2] = 0

-(z4+z_) : o

(8)

D

We now wish to eliminate zI from two of the last three equa-

tions in (8). To do this we may use the computations previously

carried out for the third order system with eigenvalues 0,k,-k

[see FPR, Vol. I, pp. 108-110], since for that system the elimination

was effected between two equations which are identical with the first

two equations in (8). The effect of this operation is to reduce the

equations and inequality defining RII to the form
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RII:'

r 2 2
z2z3+ z2z3+ z2 < 0

kzI
e = (z2- z3- z2z3)/2z2

(z3- z2+ Z2Zs)2 + 4z2z3= 0

2z2 - z3- z2z 3i
z4+ _-3log _7z2 ) = o

(9)

kz I

Since k > 0 the value of e on R21 is less than its value

on RII. It follows that R21 is given by

R21

• 2 2

z2z3+ z2z3+ z2 < 0

kz I

e < (z2- z3-z2z3)/2z2

(z3- z2+ z2z3)2 + 4z2z3= 0

z4+ _I iog2(_2-2 z3. z2z3) = 0

(lO)

The computation of R31 requires one final task, namely: we

must express the relations (i0) in terms of the y's and then eliminate

Yl between the last two equations. To say that this task is formid-

able is to indulge in understatement. At this stage we have neither

succeeded nor given up.
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CHAPTER i8

ON A NEW THEORY OF ELIMINATION
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On A New Theory Of Elimination

In Chapter 3 of Volume i, we emphasized the importance of

elimination methods for problems of optimal control, and on pp. 42-

51 of Vol. i, we discussed the use of the so-called Weierstrass

Preparation Theorem for effecting the required elimination. Un-

fort_uately the practical application of the Weierstrass Prepara-

tion Theorem was fraught with considerable difficulty. Not only

was it extremely hard to obtain satisfactory expressions for the co-

efficients in the Weierstrass polynomials but, even assuming the

two Weierstrass polynomials of degrees m and n_ say_ were at

hand, the subsequent desired elimination involved, by the dialytic

method of Sylvester, the evaluation of a determinant of order m + n.

We have now discovered a method of by-passing both the

Weierstrass Preparation_m and the Sylvester dialytic method.

It involves the evaluation of two determinants, each of order only

m or n _whichever is the lesser) instead of m + n. Nevertheless

many difficulties still remain. For one thing the new method rests

very extensively on contour integration in the complex plane (as is

true also of one method for obtaining the coefficients in the

Weierstrass polynomials). ThUS a successful application of this

new method depends on an expeditious method for carrying out these

complex integrations.
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In the sequel we give an account of the present status of the

new theory, together with a simple example to show its relationship

to the Sylvester dialytic method. It should be mentioned, however,

that the Sylvester method is applicable to polynomials only, while

the new method is applicable to analytic functions•

THEOREM i. Let f(z) and g(z) be analytic in a region R and

let f(z) / 0 on 8R. Let the equation f(z) = 0 have n roots

in R, each root being counted a number of times equal to its multi-

plicity (so that n - _ dz). Then a necessary and

sufficient condition that either two roots of the equation f(z) = 0

coalesce or that the two equations f(z) = 0 and g(z) = 0 have

a root in common is that

S O SI S2

sI s2 s3

s2 s3 s4

Sn, I Sn Sn_ I

S
n-1

S
n

Sn+ 1

$2n-2

=0

(i)

where

-120-



Sk- _l _Rf(z)zkf'(z)_(z)dz

PROOF: It is known from the theory of analytic functions that

n k

sk:i_lzi g(ziL k = 0,1,2,... (2)

where Zl, Z2, ..., Zn are the n roots of f%z) = O. It is also

known that, if any pair of these roots coincide, then the so-called

Vandermonde determinant

1

z1

2

z 1

V=
o

n-i

z 1

1 1 ... 1

z2 z3 .-- zn

2 2 2

z2 z3 •.. zn

n-i n-i n-i

z2 z3 ... zn

must vanish, and conversely. Hence we readily deduce the fact that

if any two of the roots Zl, ..., zn of f(z) = 0 coincide or if

at least one of these numbers is also a root of g(z) = O, then the

determinant
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g(zi) g(z2) g(z3) ...

zig(zI) z2g(_2) z3g(z3) ...

z_g(Zl) 2 2z2g(z2) z3g(z3) ...

n-] n-i n-I
zl g(zl) z2 g(z2) z3 g(z3 ) "'"

g(z n)

Zn2g(zn)

n-1
zn g(z n)

must vanish, and conversely• For, of course A = Vg(zl)g(z2)...g(Zn).

Hence, assuming that at least two of the zi's coalesce, or that

at least one of the g(zi)'s is zero, or both, there must exist n

numbers, 7o, Yi,72, ..., 7n_l , not all zero, such that

n-i

Z y.z3g{zi)_"". _ = O, i : 1,2 .... , n (3)
j:O j i

D

(3) by z_(_ = 0,1,2,..., n-l) and summing over i, weMultiplying

obtain

n-i n zj+_
Z - i Z g(zi) i = 0, _ = 0,I,2, ..., n-1 (4)

J=o /J i=l i

It now follows from (2) that

-122-



n-i
Z : 0, _ : 0,1,2, ..., n-i (5)j=0 7jSj+_

Since the 7's are not all zero, we thus immediately obtain (1)

as a necessary condition.

Conversely, if (i) is satisfied there exist n numbers, 7o ,

71' 72 _ "''' 7n-I not all zero, such that (5) is satisfied, whence

with the help of (2) we find that (4) is also satisfied. But we can

n n-i zj

write (5) in the form i=iZ(j=0Z 7j i)zig(zi) = 0, or better yet in

the form

n
Z _izig(zi) = 0,

i=l
= 0,1,2,..., n-I 16)

where

n-i

_i = 7 7jz jj=0 i' i = 1,2,3, ..., n (7)

Now, if (Case i) the 8's are not all zero, we see from _6) that

the determinant A must vanish_ whence at least two of the z. 's
1

must coalesce or at least one of the g(zi)'s must vanish, or both.

the other hand, if (Case 2) the _fs are all zero, it follows

n-i zj
from (7) that Z 7j = 0 and since the 7's are not all zero

j=O i

-123-



it follows that V must vanish, whenceat least two of the z's must

coalesce. In either case, we find that (I) is a sufficient condition

as stated in the theorem.

THEOREM 2. Suppose that the n roots of the equation f(z) = 0

which lie within R, as in the preceding theorem, are distinct and

suppose that just one of these roots also satisfies the equation

g(z) = 0. Then, using the same notation as in the previous theorem,

the n homogeneous linear equations,

n-i

Z S_+j yj= 0, _ = 0,i,..., n-i (8)
j=0

in the n

7n_l = 1

f(z) ---o

unknowns yo,71,...,yn_ I have a solution for which

and such that the root common to the two equations

and g(z) = 0 is equal to

l zf' (z) dz
27r---__R f(z) + 7n-2

PROOF: According to the preceding proof we know that there exist n

numbers 7o'71' "'''Yn-I not all zero such that (3) holds and that

these y's satisfy the equations (5). Since just one of the

g(z i)'s, say g(Zn) , is equal to zero, we can divide each of the
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first n-i of equations (3) by g(zi). Thus

n-i
Z _ zJ = O, i = 1,2_... n-i

j=o1j i

This meansthat the Cn-l)• roots, distinct from Zn, satisfy the

algebraic equation

n-i n-2
Yn-i z + Yn-2z + "'" + Yo = 0

Moreover_ Yn-i / 0._ since otherwise the degree of this equation

would be less than (n-l)while it still would admit (n-l) distinct

roots. Since equations (3) as well as (5) or the equivalent equa-

tions (8)_ are homogeneous, we may choose Yn_l = i.

of the (n-l) roots distinct from z is equal to
n

the sum of all n roots of the equation f(z) = 0

Hence the sum

-Yn-2 " Since

is known to be

equal to

I

2_i _ _ dz_

we find by subtraction that

i
Z -
n 2mi _R_dz +f(z) 7'n-2
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as we wished to prove•

From Theorem i we, of course, have a quantity ¢, namely the

determinant of (i), which vanishes whenever f and g have common

zeros in R. Unfortunately, however, it also vanishes under cir-

cumstances when f and g do not have a common zero, namely when-

ever f has multiple zeros. If f(z) and g(z) depend analytically

upon another complex variable _ (or upon several such variables),

then @ also depends analytically upon _, and it is, then possible,

in general, by way of the theory of removable singularities, to de-

fine a function Y(_) which vanishes if, and only if, f and g

have at least one common zer% this common zero being, of course, a

function of _. To show how this comes about we first prove the

following:

LEMMA i. Let S denote the matrix

m

So SI $2 "'" Sn_ I

SI S2 S3 •-. Sn

S2 S3 S 4 ... Sn+ I

Sn_ 1 S n Sn+ 1 •.. $2n_2
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where

l zkg(z)f,(z
sk--_ _ f(z) dz, k = 0_1,2,...

D

and let

1

z I

Then

M denote the Vandermonde matrix

i i ... I

z2 z3

2 2 2

zI z2 z3

n-1 n-1 n-1
zI z2 z3

z
n

2
z
n

n-i
z
n

det S = g(zl)g(z2).o.g(Zn)[detM]2 (9)

or, in terms of other previously introduced notation, whereby ¢ =

det S and V = det M,

= g(z 1)g(z2)'''g(zn)_ • (i0)

PROOF: From the definition of _ given in the proof of Theorem i

we have
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g(z1)g(z2)...g( n)V= A (ii)

Hence, it is sufficient to establish the matrix equality

S : (matrix of A)M' (12)

where M' is the transpose of the Vandermonde matrix M. For, if

this matrix equation were established we would have

det S = A det M' = _ det M :A - V (13)

whereas, from (ii) we know that

A = g(zl)g(z2)...g(Zn)V ,

so that, upon inserting this value of _ into (13), we obtain

det S = g(zl)g(z2)...g(zn)V.V

which is equivalent to (9) or (i0).

To establish (12) note that the (p + l)th row of the matrix

of _ contains the elements z_g(zl) , z_g(z2),... _ z_g(Zn) , whereas

the (q + l)th column of M', (which is the same at the (q + l)th

_ ... zq Hence, by therow of M) contains the elements z , z _ ' n "

rule for forming matrix products_the element in the (p + l)th row
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n

and (q + 1)th column of (matrix of A) M' must be Z zP.+q g(zi) ,
i=l l

which; by (2); is the same as S ; the element in the (p + 1)th
P+q

row and (q + 1)th column of S, as we wished to prove.

Having completed the proof of Lemma l, we now introduce the

hypothesis that f and g depend analytically on _ as long as

belongs to a specified domain D. Then the solution of the equa-

tion f(z;_) = 0 for z in terms of _ is an n-valued function of

_, analytic except possibly for branch points. We assume that all

n branches lie in R as long as _ c D. However; any analytic

symmetric fum.ction of these n branches, denoted by Zl(_);

z2(_), ..., Zn(_) , must be analytic without even branch points; in

its dependence upon _ e D. In particular, this is true of the pro-

duct

g(zl(_)_{)g(z2({),_)..-g(Zn(_),_)

and also of the square of the Vandermonde determinant,
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v(_)=

1 1 1 ... 1

Zl(_) z2(_) z3(_) ••• Zn(_)

Zl(_)2 z2(_)2 •.. zz3(_)2 n(_) 2

Zl(()n-1 z2({)n-1 z3 (_)n-1 ... Zn(_)n-1

(14)

If we assume that V(_) 2 does not vanish identically in _, then

we know from the theory of analytic functions that it vanishes only

at isolated points• The quantities

sk- 1 i zkg(z,()_,(_,_)27ri f(z,_) dz, k = 0,1,2,...

are also clearly analytic functions of _ and hence so is ¢ = det So

It follows, at once, that the function

is also analytic in D except possibly at points where V(_)

vanishes where _ is not even defined• But from (i0) it is clear

that except at these isolated points where it is not defined
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_({) = g(zl(_),{)g(z2(_),{)...g(Zn(_), {) (15)

Hence (15) can be used to define _ also at its isolated singular

points, and the resulting _(_) is analytic throughout D. More-

over it is obvious from (15) that Y(_) vanishes if and only if the

value of _ is such that one (or more) of the quantities

g(z2(_),_),... , g(Zn(_),_ ) is zero. That is, Y(_) = 0

if _ takes on a value such that the equations

if and only

f(z,_) = 0 and g(z,_) = 0 (16)

have a common solution for z.

It may be added that, instead of using (14)_ we can use the

fact that

_o al _2 "'" qn-i

_i c2 q3 "'" an

_2 _3 a4 "'" _n+l

_n-1 Cn _n+l "'" e2n-2 (17)

where
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l _ z_f'(z'_)dz, f'(z_) _(z,<)

This follows from Lem_a 1 in the special case g(z,_) = 1.

We summarize these results in the following:

THEOREM 3. Let f(z,_) and g(z,_) be analytic in z c R and

e D and let f for each _ ¢ D have n zeros located in R

but suppose that f(z,_) / 0 for z e 8 R and _ _ D. Assume that

the determinant in formula (17) does not vanish identically in D.

Then there exists a function _(_) analytic in D which vanishes

at those points _ of D (and only at those points) for which the

equations (16) have a common solution. Moreover at points where

V(_) / 0, Y(_) = ¢(_)/V(_) 2 where _ = det S and V(_) is given

by (17)o

In applying these results to cases where f and g are poly-

nomials and the region R is a circle of sufficiently large radius

centered at the origin, it is necessary to evaluate integrals of the

form

lim l__ f _ dz
_*_ _ c(_)

where C(_) represents the circle with radius _ and center at the

-132-



/

origin_ and where P and Q are polynomials in z. If the degree

of P is not less than the degree of Q, we find by division

algorithm that

P_(_zz = A_z)+B_i_)• Q(z)

where A and B are polynomials and the degree of B is less than

the degree of Q. Since A(z) is analytic we know that

I A(z)dz= o
c(_)

Hence

l _ PC__Jdz :mm R Q(z)
lim i__ I B_(_zZ dz
_oo _m c(6)

Let Q(z) : qoZ_+ ql z_-I + q_-2

blZ_-2+b2z_-3 + ...

.oa

then

, q# 0, and B(z) : b z_-I +o

I bo+ blz'l+ b2z-2 + "" °

lim i f _[ -i+ -2
_ 2bri C(_) qo + ql z q2z + ...

]az :

-i -i8
27r bo + biB elira i

e -_oo _--{ f [ -l-io
0 qo + ql8 e

+ b2_-2e-2iS+ ...

+ q2_-2e-2iS+ ...

']d8_
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and since it is easy to establish the _niform convergence of the

last written integrand_ as _ _oo, to bJqo, we reach the result

that

i bo

° (18)

Of course_ if the degree of B(z)

bo= O. But we always have qj 0

degree of Q(z).

We are now in a position to apply Theorems i, 2, and 3 to the

case where

f(z) = z2+ tz + c and g(z) = z2 + pz + q

is less than _-i, we take

by definition of _ as the

and where R is any region large enough to contain both roots of

the equation f(z) = O. In applying Theorem 3 we may take p and

q to be constants and also either b or c. The other one may be

taken as _ and the region D may be regarded as the entire complex

plane.

We must first calculate So_Sl, and S2 as defined in Theorem

i. For instance_
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s2- _i _ Hz2(2z+ b)(z2+pz + q) d_
8 z2+ bz + c

we have

and by the division algorithm

z2(2=+ b)(z2+p + pz + q) = 2_3+ (-b+ 2p)z2+(b2-pb+ 2q-2c)z+2
z+bz+c

(-b 3+ pb2-qb + 3cb-2pc) + (b4-pb3+ (-4c + q)b2+ 3pcb + (2c2-2qc))z + k
2

z+bz+c

where k is a quantity whose value is irrelevant. Hence, we find

by the method explained above that

$2= b 4- pb 3 + (-4c + q)b2+ 3pcb + (2c2-2qc) (19)

Similarly we find that

SI= -'b3 + pb2-qb _-3cb--2pc (20)

and that

S = b2-pb + 2q-2c (21)
O

(The fact that SI and S o are certain coefficients in the quotient

is not entirely accidental as the reader will soon discover if he

carries out in detail the calculations of So,SI,S 2 by use of (18)).
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The quantities _o,_i, and _2 are obtained in the same way_ but

with far less computation: thus

i 2z3+ bz 2 b2__2: _ I dz : 2c (22)
_R z2+bz + c

i 2z2+ bz

_l =_ I dz =-b (23)_R z2+ bz + c

i 2z +b
_0- _i I dz = 2 (24)

_R z2+ bz + c

It now follows from (19)-(24), from the definition of @ : det S;

and from (17) that

2
¢ = qb4+ (-pcpq)b3+(3-6qc + p c + q2)b2+(4pc2+4pqc)b+

(-4c3+ 8c2q-4cq2-4p2c2)

and

v(_)2 = b2- 4c.

This last expression is, of course, precisely the discriminant of

z2+ bz + c_ as it should be, and, for this reason it was not really

necessary to carry out the calculations indicated in (22)-(24).
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The essence of Theorem 3 is to the effect that _ is exactly

divisible by V(_) 2. This fact is readily verifiable in the pre-

sent example. In fact it is found from the above expression for

that

¢ = (b2_c)(_pcb_pqb+ °2+p2o + q2+ qb2 2qc)

Thus_ the quantity Y of Theorem 3 turns out, in this example, to

be

2 2 qb2_2qc= -pcb-pqb + c2+ p c + q +

This turns out to be exactly the Sylvester eliminant.

i p q 0

0 i p q

i b c 0

0 i b c

D

In order to illustrate Theorem 2_ it is necessary to find the

quantities yo,71 , which according to (5) are given in this case

n = 2, by the equations

SoYo + S171 = 0

S17o ÷ $271 = 0
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We are interested in the case when these two equations have a

simultaneous non-trivial solution and, in fact, according to Theorem

2 we look for a solution in which 71 = I. Thus we find that

-SI/S ° and the formula of Theorem 2 for the root r commonTo=

to the two equations f(z) = 0 yields, and g(z) = 0 yields

SI So_ I- SI
i _R dz + 7°= al- _ = Sr - 27Fi

O

Hence, using (20), (21) and (23), we get

2pc-bc + bq

r b 2- pb + 2q-2c

In view of the fact that we are dealing with the case where _ = O,

i.e._

qb 2_ q2+ 2 22qc - pqb .-pbc + c + p c = 0

we find the following equivalent but simpler expression for r:

Either of these expressions for the common root of the two equations

is, of course, in this example also obtainable by the dialytic

method of Sylvester.
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CHAPTER 19

TIME OPTIMAL CONTROL

SUBJECT TO PHASE COORDINATE CONSTRAINTS
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i. Statement Of The General Problem

Consider the system

: f(x)+ au (1.1)

where x is an n-vector representing the system's state, f(x) is

an n-vector function of x_ a is a constant n-vector and u = u(t)_

the control parameter_ is a scalar function to be more properly des-

cribed below. We assume that f is of class C2 in some region

G containing the origin and that f(O) = 0. Moreover, we assume

that the origin is an isolated zero of f. The function u is re-

stricted to the class U of all real valued piecewise continuous

functions on the real line whose range is contained in the closed

interval [-i, i]. The space of x is denoted by X.

A point x mn G is said to be controllable if there exists
o

a function u e U which steers the system from x ° to the origin

in finite time. The set of all controllable points in G is called

the controllable re_ion in X and denoted by R.

Let N CX be a given closed set in phase space. The set N

will be called the set of constraints. Consider the set N I of all

those points x e R for which there exists a control function
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u Ct) e U which steers the point x to the origin without ever
X"

leaving the set N. Clearly NICNCR , for if x e N I then

may be steered into the origin, whence x e R, and on the other

X

hand x cannot be outside N without violating the condition that

x be steered into the origin without leaving N° If x ° e NI then

there exists at least one control function u (t) which steers x
X O
o

to the origin in finite time without ever leaving the set N. How-

ever_ the function u (t) is not necessarily unique. In fact,
x
O

there may exist infinitely many distinct control functions each of

which steers x to the origin without ever leaving the set N.
O

Denote the set of all these control functions by Ux (N). Our prob-
0

lem may now be stated as follows: for a given point x° e N I find

that function _or those functions) in U (N) which steer the point
x
o

x ° to the origln in minimum time T = T(xo,N ). It may_ of course,

happe_ that this pr0blem_ as formulated above, is too severe. It

may not be generally possible to find an optimal control for every

point x in the set
O

trollable withln N,

NI° Although every point in NI is con-

%he search for an 2ptimal control may have to

be restricted to a set smaller than NI.

o On The Notion Of Controllability.

Let _x(0) be the class of all (unconstrained) admissible
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trajectories which cor_nect a fixed point x c R to the origin. We

shall restrict our attention to systems (i.i) which have the property

that at most one of the members of _x(O) satisfies the maximum

principle (all x _ R). In other words, we assume that if there is

a solution satisfying the necessary conditions for optimality em-

bodied in the maximum principle, then this solution is unique.

We shall say that a set KCR is controllable within a set

M_X if for every point x ¢ K there exists an admissible control

u (t) which steers x to the origin in finite time without ever
x

leaving the set M. Using this formulation the set N I may be de-

fined as the maximal subset which is controllable within N. It is

easy to see that R is controllable within itself. For if x c R

then there exists an admissible control which steers x to the origin.

If y is any intermediate point on an admissible trajectory which

connects x to ±he origin, then y too is controllable. It follows

that every admissible trajectory is contained in R, whence R is

controllable within itself° Thus, if N = R, the problem of time-

optimal control subject to constraints is identical with the uncon-

strained problem.

Suppose N is a proper subset of R. Let x ° c NI and let

u (t) be an admissible control which is time-optimal relative to
x
o
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the class
x
O

u (t) which connects
x
O

definition of U (N)
X
O

the boundary of N

U (N). Let _ be the trajectory corresponding to

x to the origin. It follows from the
0

that _CN. If _ does not intersect

then there is a whole neighborhood of _-7

which lies in the interior of N. Hence _ must satisfy the

maximum principle throughout its length. It therefore follows from

our assumption concerning the system (i) that _ is optimal re-

lative to the whole class U. Thus_ if _ does not intersect the

boundary of N it is identical with the optimal trajectory of the

unconstrained problem. Otherwise, r is composed of arcs which

lie alternately in the interior of N and on its boundary. Follow-

ing standard notation we shall denote the boundary of N by 8N.

I_t R 2 be that subset of N i which has the property that

every one of its points has an optimal control which steers it to

the origin (within N). In other words, N2 is the set of all those

points Xo c NI for which there exists a control which is optimal

relative to the class Ux (N). A point x _ N2 will be said to be
O

strongly controllable . Clearly N2CNICN. Examples in which

NI_ N will be given in the next section. However, we have not yet

found an example of a case in which N2 _ NI, nor have we succeeded

in proving that N2 must equal N I. As assertion to the effect that
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NI= N2 (under certain reasonable assumptions) would be important

inasmuchas it would establish the existence of a solution to the

problem of time-optimal control with constraints throughout the

set N1. On the other hand_ if N2 is not necessarily equal to

Nl_ there would be points in N, which are controllable within

N, but are not strongly controllable there (they maybe strongly

controllable without constraints). As stated above, this question

is still open.

Before proceeding further with a detailed discussion of results

obtained by us, it seemsappropriate to relate the problem at hand

to somerather far reaching theorems in the calculus of variations

which are found in the literature. The most appropriate treatment

for present purposes (especially as regards the first problem) is to

be found _n Chapter 6 of "The Mathematical Theory of Optimal Processes"

by Pontryagin, Boltyansky_ Gamkrelidze, and Mischenko (translated by

Trirogoff).

The prgolem considered in that chapter is concerned with the

system,

dx _ f(x, U)
dt

where x is a point in a closed region B of n-dimensional space and
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u is a point in a closed region of r-dimensional space. Given two

points x° and xI in B, one considers the class C of all

functions u(t), whose values lie in U and which are defined on

some interval to & t _ tl, such that there exists a solution

x(t) of the above system having x ° and x I as end points and

everywhere contained in B. That is X(to) = xo, x(tl) = Xl_ and_

x(t) c B for each t on the interval to _ t _ t I. The problem,

then_ is to choose out of this class C, a particular u(t), which

minimizes a given integral of the form,

t I
I f°(x(t), u(t))dt.

t
O

The r-vector f_uctions u(t) may assume values on the boundary of

U and the n-vector functions x(t) may assume values on the bound-

ary of B. An arc of such an optimal trajectory which lies entirely

in the interior of B, except for its end points (which may lie on

the boundary of B), must satisfy the Pontryagin maximum principle.

If, however, it lies entirely on the boundary of B it must still

satisfy a modified maximum principle of lower dimensionality, and

there is also a so-called jump condition which must be satisfied at

the juncture of two such arcs of either kind.

For certain kinds of problems of particular importance, the
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maximum principle implies bang-bang control. Evidently, then, the

theory of bang-bang control is going to continue to play an important

role in the constrained problem.

3. Contributions To The General Theory

We return to the system

= f(x)+ au (3.1)

where x is an n-vector representing the system's state, f(x) is

an n-vector function of x, a is a constant n-vector and u = u(t),

the control parameter, is a scalar function. We assume that f is

of class C2 in some region containing the origin and that f(0) = O.

Moreover, we assume that the origin is an isolated zero of f. The

function u is restricted to the class U of all real valued piece-

wise continuous functions on the real line whose range is contained

in the closed interval [-i,i]. System (I) is assumed to be controll-

able in a certain neighborhood of the origin. The space of x is

denoted by X.

Let R be the controllable region in X_ namely the set of

all points which can be steered into the origin in finite time. If

x is in R then there exists a control function u (t) in U
x
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which steers x into the origin in finite time T(x_ Ux). The

assumption that thereis a neighborhood of the origin which is

controllable says that R contains an open set G which contains

the origin.

THEOREM 1. If R contains an open set G which contains the origin

then R is open.

PROOF: Let x be an arbitrary point in R. Then there exists a

control function Ux(t ) which steers x into the origin in finite

time. Let S(5) denote an open sphere of radius 5 and center at

the origin. Choose 5 sufficiently small so that S(5)c-G. Since

steers x into the origin it must steer it into S(_). Letu(t)

= _(t_x_u) denote the solution of system (3.1)_ corresponding to

the control u, which passes through the point x at time t = O.

Then there exists a time t* > 0 such that _(t*,X,Ux) _ S(_). Let

be the point _(t*,X,Ux) and let Sp(_)_ be the open sphere ofP

5

radius _ and center p. Given p and 5 there clearly exists a

neighborhood N of x having the property that if y is any point
x

in N then
X

5

llcp(t,y,Ux) - q_(t,X_Ux)II <
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D

D

for all 0 __ t _ t* . (Here JJpJJ denotes the norm of p). In

particular, this inequality holds for t = t*, whence

s( )cR.

Thus the trajectory through y with control u (t) intersects R
X

and therefore y c R. Hence N _-R and R is open. This completes
X

the proof.

Let N be a closed bounded (hence compact) subset of R which

contains the origin. Following § i we denote by NI the subset of

N which consists of all points which are controllable within N.

We are interested in the properties of the set NI.

PROPOSITION i. NI is not empty.

PROOF: 0 c N 1 .

PROPOSITION 2. N 1 is the maximal subset of N which is con-

trollable within itself.

PROOF: Let _S I be the collection of all subsets of N each

of which has the property that it is controllable within itself. Let

S= US .
_ O_

Clearly SeN. If x _ S, then x c Solk for some 5*. Since S _
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D

is controllable within itself, x is controllable within S. and

therefore within S. It follows that S is controllable within it-

self. If K is any subset of N which is controllable within it-

self then, by definition of S, K_S. Hence S is the maximal

subset of N which is controllable within itself. We shall show

that S = N I.

S is controllable within itself and S_N. Hence, by defini-

tion of NI, S CN I. Conversely, let x _ N I. Then there exists

a control u (t) which steers x to the origin in finite time
X

T(X,Ux) within the set N. The arc [_(t,X, Ux) I 0 _ t _ T(X_Ux)]

is a subset of N and is clearly controllable within itself. Hence

it is contained in S and, in particular, _(O,x,u ) = x is in S.
x

Therefore, NI_S. This completes the proof of Proposition 2.

The set N I may actually reduce to a single point, namely the

origin. _lhis happens, for example, in the system _i = _ _2 = x I

for the set N consisting of all points lying on the x2-axis between

x2= -i and x2= + i.

We shall assume henceforth that the set N contains an open set

which contains the origin. It is not clear to us at this point

whether this implies that the set N I has the same property.
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LEMMA i. Let 5 > 0 be sufficiently small so that S(5)_G. Let

C be a compact subset of R. Then there exists a time T(C_5) such

that every point in D may be steered into S(8) in time T(C,5)

or less.

PROOF: Let x 6 C. Then there exists a control u (t) e U which
x

steers x into the origin in time T(X_Ux). Hence_ there exists an

open neighborhood N of x such that
x

 (T(X,Ux),y,ux)

for all y e N . The collection of neighborhoods [NxlX, e C] formX

an open covering of C from which we may select a finite subcovering

el.,

[NxI' Nx]r Pick

: max T(xi,u ).T(C,_) i : i,..., r x.
1

This completes the proof of Lemma i.

2. For any set F, let F ° denote the interior of F.

Suppose there exists an open subset G* of N which contains the

origin and is controllable within itself. Suppose, furthermore, that

0

x is controllable within N °. Then x 6 N 1 .
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PROOF: If x is controllable within N ° then x c NI. Moreover,

there exists a control u (t) e U which steers x to the origin in
X

time T(X,Ux) in such a way that _(t,X,Ux) e N ° for all 0 <-t <-

T(X,Ux). Let F = p(x_ O,T(X,Ux) ) denote the arc of the trajectory

of _(t,X,Ux) corresponding to the time interval [O,T(X_Ux)].

is an arc in the topological sense of this word, hence it is compact.

The boundary _N of the set N is also compact and 8N _ _7 = O.

Hence the distance between _ and _N is positive, say _ > O.

Let G*_ N be the given open neighborhood of the origin which is

controllable within itself. For any fixed positive integer r there

exists a neighborhood N of x having the property that
X

ll_(t,y, Ux) - qD(t,X,Ux)JJ < _-
2r

for all y e N and all 0 <-t __ T(X,Ux). Choose r large enoughX

so that S(2/_r)CG*. Thus _(%Y,Ux)JO __ t __ T(X,Ux) is contained

in a tubular neighborhood of F which does not intersect _N_ and

q_(T(X, Ux),Y, Ux) e G*. Hence y is controllable within N ° and

0

therefore Nx _ NI" It follows that x _ NI . This completes the

proof of Lemma 2.

COROLLARY I. Under the assumption of Lenmm 2, if x e 8NIN N i

then any trajectory which steers x to the origin must meet _iN.
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PROOF: If x • NI and there exists a control function which steers

x to the origin without meeting _l, then x is controllable with-

0

in N° . But then x • N1, by Lemma 2. This completes the proof.

4. A Two-Dimensional Example

Consider the system

= •' : xl' I•I I (4.1)

The controllable region of system (4.1) is the whole plane. Let N,

the set of constraints, be a disc of radius R with the center at

the origin. Our problem is to find the sets N1 and N2 and to

develop a time-optimal control law for points in N2 subject to the

constraints represented by the set N.

We know from the theorem mentioned in § 2 [L. S. Pontryagin_

V. G. Boltyanskii, R. V. Gamkelidze, E. F. Mishchenko, THE MATHEMATI-

CAL THEORY OF OPTIMAL PROCESSES, p. 311], that any portion of an opti-

mal trajectory lying in the interior of the set N must satisfy the

maximum principle. Hence, such portion of such trajectory will have

to be Bang-Bang.

The switching curve of system (4.1) is well known from our

previous investigations. Its leaves are given by
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1 2

RII: x2- _ xI , x I < 0

1 2

RI2: x2+ _ xI , x I > 0 (4.2)

A closed form optimal control law for the unconstrained system was

found in Chapter 13 to be

I 2
c = -sgn[x2+_ (sgn Xl)XI] (4.3)

Let r = (xI + x )2 . Then 9 = (xl/r)(e + x2). Using the

value of e as given in (4.3) we find that _ is positive through-

out the shaded region of Figure 4.1 and negative otherwise. We shall

distinguish among the following cases:

(i) R <- I

(ii) I<R< _3

(iii) R_->_3
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FIGUREh.!

(i) The Case Where R ! i

For points lying above the switching curve the value of

is -i. For such points the value of _ is negative in the first

and fourth quadrants. Therefore any trajectory starting within

the fourth or first quadrant above the switching curve (and, of

course, within the disc N_ of radius R) cannot leave N either

in the fourth or first quadrant. Such trajectory must therefore meet

the positive half of the x2-axis at a point whose x2-coordinate
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satisfies 0 < x2 _ R. However, once the trajectory crosses the

x2-axis its distance from the origin begins to increase. There are

two possibilities: the continued trajectory maymeet the leaf Rll

before meeting the boundary of N, in which case the complete

trajectory lies in the interior of N and is therefore identical

with the unconstrained case, or it may meet the boundary of N be-

fore meeting Rll. In the latter case, part of the optimal trajectory,

if there is one_ must lie on the boundary of the disc.

Now it is easy to see that an arc of a trajectory of system

(4.1) will lie on a circle with center at the origin if and only if

e = -x2. Since R _ 1 and Ix21 _ R for every point on the bound-

ary of N_ the control e = -x 2 is admissible. Since it is unique,

it is also optimal. Once the curve Rll is reached, either in the

interior of N or on its boundary_ control is switched to e = +l

and the system is steered into the origin on Rll . We conclude,

therefore, that for any point P in N, lying above the switching

curve (of the unconstrained problem), there exists a unique control

which steers it time-optimally to the origin within the set N.

The situation below the switching curve is completely analogous,

except that the value assigned to e in the interior of N is re-

versed. However, the value assigned to _ on the boundary of N
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remains the same_ namely, 6 = -x2.

Thus_ the case when R _ l, provides us with an example in

which N = Nl= N2. It is for that reason that a complete solution

to the problem is possible: every point in N

within N and moreover, every point within N

mal control within N.

Examples of optimally controlled trajectories within N are

given in Figure 4.2

is controllable

has a (unique) opti-

FIGURE 4.2
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We now proceed to develop a closed-form time-optimal control

law subject to the constraint embodied in the set N(R _ 1).

Let e be as in (4.3). We shall write e* for the optimal

control law of the constrained system. We shall show that one

form of such control is given by

c* = l(1 + sgn[R-r])e + _(1-sgn[R-r])(l-sgn Xl)([1 + e sgn[R-r]] I-x2]

7

+ [l-e sgn[R-r]]e) + _(l-sgn[R-r])(l + Xl)([1-e sgn[R-r] ]sgn [-x2]

+ [i + e sgn[R-r]]e)

(44)

We first remark that 6" requires slight overshoots beyond the

circle of radius R. This, however_ does not create any difficulty.

If it were necessary to keep strictly within the disc N_ one would

simply replace R in (4.4) by a quantity R' which is slightly

smaller than R. This would assure control strictly within N.

The function 6" is given in terms of three summands. The

first of these vanishes outside the circle of radius R, whereas the

last two vanish in its interior. Thus, in the interior of N we have,

c* : + :
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as required.

On the boundary of N, or rather, slightly beyond the boundary

of N, the first term vanished. Wenote that the second sumn_nd

vanishes for xI > 0 while the third one vanishes for xI < 0. If

xI < 0 an optimal trajectory could reach the boundary of the disc

only in the second quadrant above the switching curve (Figure 4.2).

Along such a trajectory c = -1. Oncethe system exits the circle

of radius R, the value of (R-r) becomesnegative and the value of

c* becomes -x 2. The system would now proceed along an arc of a

circle with center at the origin in the counterclockwise direction.

As long as the moving point lies above Rll the value of e remains

-1, and the term

(l-c sgn[R-r] )_,

which appears in the second summand, vanishes. However, once the sys-

tem_ moving as it does on its circular arc, crosses the switching

curve, the value of e changes to + I. At this juncture the co-

efficient [i + 6 sgn[R-r]] vanishes whereas [l-e sgn[R-r]] = 2.

Thus_ the value of e* is now switched to the value of e, which

is + i. In other words, once the system reaches the switching curve,
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control is switched c* = + i and the system is steered into the

origin along RII.

Similar considerations are obtained in the case when the system

reaches the boundary of N in the region x I > O, except that in

this case the second summand vanishes and it is the third one which

furnishes effective control.

(ii) The Case When i < R <_3

Reference is made to Figure 4.3.

X_

Consider trajectories starting

Y

X£

within N_

FIGURE 4.3

above the switching curve_ in the first or fourth
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quadrant. Such trajectories (for which _ = -1) cannot leave the

circle through the arc AB since _ is decreasing there. Let GHC

be the arc of the trajectory, with c = -1, which passes through

C. Then any trajectory, with c = -1, which starts in the region

CHGBC must meet the boundary of N on the arc BC. Such trajectory,

if it were to be controllable within N, would have to proceed along

the arc BC, which would require setting c = -x 2. However, x2 _ 1

on BC and therefore such control is not admissible. It follows

that there exists no optimal control for points in the shaded region

which would keep the controlled trajectory within N. The shaded

region must therefore lie outside the set N2.

In fact, it is not difficult to see that the region CHGBC

actually lies outside the set N I. For let

ible control, with u(t) _ -i. If _i and

tories emanating from the same initial point

satisfying, respectively

c = u(t) be any admiss-

_2 are two trajec-

P in CHGBC and

Xl = -i, x2 = Xl

and

_i = u(t), _2 = Xl, lu(t)l S i
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then clearly _2 lies to the right of _i' The trajectory _2

would therefore be forced to the boundary of N somewhere between

G and C. Since x 2 is increasing along _2 ' the system would

then have to proceed counterclockwise along an arc of the circle

leading to the point C. This, however, is inadmissible. Hence no

point in CHGBC is controllable within N even if the condition of

optimality is dropped.

Every trajectory emanating in the region OAGHCO, with c = -i,

will reach the x2-axis between 0 and C and will proceed thence

to the third quadrant. In the region CDLC the value of

9 =(xl/r)(c + x2) is negative for c = -I. Hence all trajectories,

with e = -i_ emanating from or crossing through this region, cannot

reach the boundary of the circle along the arc CD. When continued

forward in time they may either intersect Ell at some point between

E and 0 without ever reaching the boundary of the circle, or they

may intersect the circular arc ED before reaching RII. In the

first case the value of _ is switched to + i and the system pro-

ceeds to the origin without ever reaching the boundary of N. In

the latter case _ is set equal to -x2 . Since the arc ED lies

below the line x2= I, such control is admissible. When the point
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E is reached control is switched to + i. Thus_ every point in the

region OAGHCDEF0 is optimally controllable within N. The situa-

tion below the switching curve is completely symmetric (Figure 4.3).

Here_ then, is a case in which N / N1 but Nl= N2.

(iii) The Case When R _3

Reference is made to Figure 4.4. Let ABC be an arc of the

trajectory, with c = -1, which passes through C. The reader will

easily convince himself that the set N 1 which is controllable with-

in N consists of the unshaded part of the disc. Moreover_ Nl= N2

so that control within N 1 is optimal. The difference between cases

(ii) and (iii) is that in the latter case no trajectories emanating

from the interior of N1 can ever reach the bo_aary of N, whereas

in the former case trajectories e[anating from the interior of N1

could reach the boundary along the arcs DE and KA. In case (iii)

c need never be set equal to -x2 whereas in case (ii) e must be

set equal to -x2 along the aforementioned arcs. In case (iii) we

still have N / N1, N 1 = N2.
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FIGURE 4.4

5. The Subdivisions of _N

Let us consider a closed (n-l)-dimensional manifold _N topo-

logically equivalent to a sphere. We suppose that _N is the

boundary of an n-dimensional region N which contains the origin as

an interior point. In accordance with a previously explained termino-

logy, we shall say that the region N is controllable within itself,

if, for every point x _ N U _N, there can be found at least one
o

continuous or piecewise continuous scalar function u(t), whose

absolute value does not exceed unity, such that the trajectory of the
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system

dx/dt = Ax + au(t) (5.1)

for which x(O) = x ° must pass through the origin for some finite

t : t o > 0 without ever leaving N U_N for any t between 0

and t o. Here_ as usual_ we mean x and a to represent n-vectors,

while A is an n X n constant matrix.

We shall suppose that 8N is (at least) piecewise represent-

able by equations of the form,

f(x): o, (5.2)

where f is of class C' and is negative for points in N near

_N and positive for points outside of N U_N near _N. We now

contemplate four sets of points SI_S2_S3;S 4 located on _N and

defined as follows:

SI consists of those points on 8N which "move" outward

(that is, away from N) under (5.1) when u(t) = + i, and which

moves inward under (5.1) when u(t) = -i. That is, the points of

SI are points of egress under h = Ax + a and points of ingress

under _ = Ax-a_ according to a well-known terminology. Analytically,

this means that for points in SI
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sgnE(Sf/Sx)(Ax _+a)] = + 1 (5.3)

S2 consists of those points on 8N which move inward under (5.1)

when u(t) = + i and which moveoutward under (5.1) when u(t) = -I.

That is, the points of S2 are points of ingress under _ = Ax + a

and points of egress under _ = Ax-a. Analytically this meansthat

for points in S2

3 consists of those points on _N which move inward under

(5.1) when u(t) = _ i. That is, the points of S3 are points of

ingress under both _ =Ax + a and _ = Ax-a, which means, analyti-

cally, that for points in S3

(_f/_x)(Ax + a) < 0 (5.5)

S4 consists of those points on _N which move outward under

(5.1) when u(t) = _ i. That is, the points of S4 are points of

egress under both _ = Ax + a and _ = Ax-a, which means, analyti-

cally_ that for points in S4

_+ > o (5.6)
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Evidently S1U S2u S3U $4C _N and Si_ S. is empty when-J

ever i / j (i,j = 1,2,3,4). We shall suppose also that

_ -[sIU s2U s3U s4]

may be represented as a finite number of cells of dimensionality

< n-l.

THEOREM i. If N is controllable within itself, S4 is empty.

PROOF: Let x ° e S4 and suppose it is possible to join Xo with

the origin by a trajectory of (5.1) which never leaves N U SN and

for which lu(t)l_- i. Then, with x(0) = Xo, we evidently have

(bf/_x)(AXo+ au(O)) <=0 (5-7)

for some u(0) with absolute value less than unity. For evidently

(5.7) can not hold for any u(0) = _ i, because of (5.6). Subtract-

ing the left member of (5.6) (with x = Xo) from the left member of

(5-7) we also obtain

(_f/_x)a[u(O)T l]< 0 (5.8)

Since sgn[u(O)Tl]=_l end since (5.8) holds for both determinations of

the ambiguous sign, we find from the upper sign that (_f/_x)a > 0
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and from the lower sign that _y_x_a < 0, when x = x . The
o

theorem follows at once from this palpable contradiction.

THEOREM 2. No trajectory of (5-i) initially within N can reach

a point of S3 without first leaving N.

The proof of this theorem is entirely similar to the proof of

Theorem I. It may be formulated as follows:

Suppose there were a point x° c S3 through which passes a

> O, i.e., X(to) = x . Now, iftrajectory of (5.1) at t = to o

x(t) _ N U_N for all positive t __ to," as would have to be the

case for some u(t) if the theorem were false, we would have at

X = X
O

(_f/ax)(_o+aU(to))_ 0 (5.9)

since f is negative within N,

lU(to) I < 1,

x c
0 S_ .

N. It is obvious that

contradicted by (5.9) at

obtain by subtraction

zero on _N, and positive without

since otherwise (5.5) would be

From (5.5) and (5.9) we also

(_f/_)a[u(t o) ; l] > o (5.10)

Since sgn[U(to) g i] = 7 1 and since (5.10) holds for both choices
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I

of the ambiguous sign_ we find from the upper sign that

and from the lower sign that (_f/_x)a > 0 at x = x o.

follows at once from this contradiction.

As a result of Theorems i and 2, we can virtually dismiss from

further attention the behavior of trajectories on S3 or S 4.

THEOREM3. If a trajectory x(t) of (5.1) lies on _N throughout

a time interval t o < t < tl, then

(af/_)a< o

The theorem

u(t) -- -(a#/_ )Ax/[(af/_x)a] (5.ii)

Secondly such a piece of some trajectory, with luJ _ i,

through every interior point of SI or S2 and_ thirdly,

can not vanish on SI or S2.

passes

(_f/_X)a

PROOF: Since x(t) lies on aN throughout the interval to < t < tl,

we must have f[x(t)] _ O. Differentiating this identity with re-

spect to t and replacing dx/dt by the right hand member of (5.1)

we obtain

(_)f/_x)[Ax + au(t)] = 0 (5.12)

from which we obtain (5.11) immediately, at least, if (_f/_x)a / O.

The second assertion of the theorem follows from (5.3) in the case
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of an interior point x of S1, or from (5.4) in the case of an

interior point of S2. In either case, the scalar L(u) =

(Sf/Sx)[Ax + am], considered as a (linear) function of the scalar

variable u, changes sign on the interval -l _ u _ + 1. Hence,

it must vanish at someintermediate value of u.

_ne fact that (_f/_x)a / 0 anywhere on SI or S2 follows

from the fact that the linear function L(u) _ constant, (otherwise

it could not change sign as noted above). Therefore, the coefficient

of u in L(u) is not zero. This coefficient is, of course, pre-

cisely (_f/Sx)a.
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0

L

FIGURE 5.1

In this figure (representing a three-dimensional problem) the

only part of the boundary shown is the set SI _ S2 represented by

the annulus. The leaf RI, I of the switching curve RI, is repre-

sented by 0MK, OM being interior to N while MK_S 2. The leaf
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In this figure (representing a three-dimensional problem) the

only part of the boundary shown is the set SI _ S2 represented by

the annulus. The leaf RI, I of the switching curve RI, is repre-

sented by OMK, OM being interior to N while MK_S2o The leaf
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R2_ I of the switching surface R2 consists of those half-trajectories

"pointing at" RI, I along its whole length 0MK . R2, I imtersects

SI along the curve LK and coincides with S I "above" this curve

LK. RI, 2 is represented by 0LJ. R2,2 is not shown, so as not to

clutter up the figure too much. But the boundary of R2_ 2 contains

OL3, and R2z 2 intersects S2 along a curve JM and coincides

with S2 above JM. See the text for comments on points Pi_P2,QI_

Q2 c S2 and P3,P4,%,Q4 c SI.

6. The Case When N = NI= N 2

In the sequel we suppose not only that the region N is controll-

able within itself but that it is strongly controllable within itself

in the sense of time optimality. This means that among all the ad-

missible controls yielding a trajectory defined and contained in

N U _N on some interval 0 S t S t o which connects a given point

x ° with the origin (x(0) = Xo , X(to) = 0), there is always at least

one for which t is a minimum.
o

The problem of finding time optimal trajectories is then greatly

simplified by a known theorem (referred to in more detail in § 2 of

the present chapter) according to which time optimal trajectories

must consist (at least_ in the present _nstance_ if certain conditions
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of generality relative to the composition of _N are satisfied)

of a finite number of arcs of the following three types.

Type 1. Solutions of the system _ = Ax + a which lie interior to N.

Type 2. Solutions of the system _ = Ax-a which lie interior to N.

Type 3. Solutions of the system x = Ax-a[ (Sf/_x)Ax] [(Sf/Sx)a]-i

which lie in the set SIU S2.

Any continuous trajectory consisting of a finite number of arcs

of these three types which leads from an initial point x c N USN
O

to the origin will here be called a bang-bang (constrained) trajec-

tory. The theorem referred to above does not say that bang-bang

trajectories are always time optimal but rather that any time optimal

trajectory leading from x ° to the origin must be bang-bang. This

means that in the search for time opt i_l trajectories we may limit

ourselves to the class of bang-bang trajectories. For this reason

the study of bang-bang trajectories is likely to prove fruitful.

Just as in the unconstrained problem, we define switching mani-

folds of various dimensionalities as the loci of the end points of

such arcs of all possible bang-bang trajectories. The parts of switch-

ing manifolds involving end points of arcs of Type 3 must lie completely

on _N and indeed must furthermore lie in SIU S2 in accordance

with Theorem 3 of Section 5. The other parts of the switching manifolds
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would appear to be somewhatthe sameas in the unconstrained problem.

At least the switching manifolds maytheoretically be found by moving

backward from the origin just as in the unconstrained problem.

Thus the one-dimensional switching manifold RI consists of

two leaves RI, I and RI,2_ the first of which (i.e., RI,I)

always contains the connected part of the half-trajectory of the

system _ = Ax + a for t _ 0 which lies within N and which is

at the origin when t = 0_ but RI, I also in general contains arcs

of Type 3 lying in S2 (see Figure 5.1, drawn for n = 3), the

whole of RI, I being a continuous curve joining the origin with a

boundary point K of S2.

Next the leaf R2_I of the two-dimensional switching manifold

R2 always contains the connected parts of all the half trajectories

of the equation _ = Ax-a for t _ 0 which lie within N and which

are on RI, I when t = 0_ but R2_I also in general contains arcs

of Type 3 lying on SI, the whole of R2,I being a continuous sur-

face whose boundary includes RI_l_ and a curve on the boundary of

SI. Notice that, if P _ (RI, I N_N), then P c $2_ so that P

is a point of egress for the system _ = Ax-a. Thus the half trajec-

tory t _ 0, which at t = 0, is at P_ yields points interior to

N when -t is small_ as required by the above description.
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Proceeding by induction, the leaf Rk, I of the k-dimensional

switching manifold Rk(l _ k _ n-l) always contains the connected

parts of all the half-trajectories of the system _ = Ax-(-l)ka for

t _ 0 which lie within N and which are on Rk_l, I when t = O;

but Rk, I also in general contains arcs of Type 3 lying in

S½[3_(_l)k], the whole of Rk, I being a continuous k-surface whose

boundary includes Rk_l, I and a (k-l)-dimensional manifold lying on

the boundary of S½[3_(_l)k ]. Notice that, if P c (Rk_l,l_ _N),

then P c S½[3_(_l)k], so that P is a point of egress for the

system _ = Ax-(-1)ka. Thus the half trajectory t _ 0 yields

points interior to N when -t is small, as required by the above

description.

After obtaining the leaf Rn_13 1 of the switching manifold of

highest dimensionality Rn_l, the connected parts of all the half

trajectories of the system _ = Ax-(-1)na for t _ 0 which lie with-

in N and which are on Rn_l, 1 when t = 0 make up an n-dimensional

region Tl_ N whose points can be steered along a bang-bang trajec-

tory into the origin via

as the initial value of

forward uniquely defined°

or -1 except at certain points on

(5oll) or Section 5o

Rn_l,l, Rn_2,1, oo.,RI, I using -(-I) n

u, the other values of u being thence-

They are, as a matter of fact, either + I

_N where they are determined by
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By repeating the above discussion with the modification that

RI,I' R2,1' Rk, l' SI,S2,a are to be replaced respectively by R1,2,

R2_2,..., Rk,2, S2,SI,-a we obtain the other leaves of the switch-

ing manifolds, as well as an n-dimensional region T2_N whose

points can be steered along a bang-bang trajectory via Rn_l_2,

Rn_2,2_..o , RI, 2 using (-i) n as the initial value of u_ and

with the other values of u uniquely determined as before.

There are also certain points, initially on _N, which do not

begin with u = _ i, but rather with the value of u given by

(5.11) of Section 5- This is because such points are already on a

part of a switching manifold which lies on _N. Examples of such

points are indicated in Figure (5.1) by PI,P2,P3,P 4. On the other

hand the initial value to be taken at QI or Q2 would be u = + I,

while at _ or Q4 the initial value of u would be -i.

Evidently there is much lack of rigor in the above discussion.

For one thing, although we might conceivably claim that N =

TI U T2 since N is assumed to be strongly controllable, it would

probably be more difficult to prove that TI and T2 have no common

point. If T I and T2 were to have a non-vacuous intersection, we

would have a set of points for which bang-bang control is not unique

and this would make it more difficult to decide which control is opti-

mal.
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For another thing, it is not entirely clear, for example, why

one should terminate R1,1 at a boundary point K of S2 (see

Figure 5.1). It is possible that in some problems it might have to

be continued into S 1 even though, if this were done, the leaf

R2,1 would be very peculiar. It would look rather like two leaves

joined at the point K and with u = + 1 instead of -1 on the

part near R1,1 beyond K.

The situation becomes even more complex when we try to discuss

the natural boundaries of the leaves of higher dimensionality.

In attempting to illustrate the above theory, we considered the

system Xl = u(t), x2 = Xl' % = x23 subject to the constraint

2 2 2 2
xI + x2 + _ _ r as well as, of course, lul _ l. That is, we

). It was found, however, thatx_2 < r2
attempted to take N = (xli i

such an N is not controllable within 2tself, no matter how small

the positive number r may be chosen) for it was found that the set

S4 is never vacuous if N is chosen in this way. In order to get

a set controllable within itself part of the sphere x_ + x_ +

2 2

_ r must be discarded. Such an example is discussed in the

following chapter.
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CHAPTER 2O

A THREE DIMENSIONAL EXAMPLE OF BANG-BANG CONTROL

WITH PHASE COORDINATE CONSTRAINTS
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A Three Dimensional Example Of Ban_-Ban_ Control With Constraints

We consider the system Xl = u, x2 = Xl' _ = x2' subject to

lul _ 1 along with the two further constraints 3Xl+ x_+ 0

and -3Xl+ x_ + _ -1 _ 0. It will be somewhat more convenient,

however, to use x,y,z in place of x2,x3,xl, respectively. The

system is therefore written in the form _ = u, _ = z, # = x and

the constraint conditions are lul & l, 3z + x2+ y2 -1 _ 0 and

-3z + x2 + y2 -1 S O. The last two conditions mean that the motion

is required to take place within, or on the boundary of, the three-

dimensional region N bounded by the two paraboloids of revolution

z = ( )(1-x 2 _y2) and z = -(_)(1-x 2 _y2). The part of the boundary,

for which z _ 0, lies on the first of these paraboloids and will be

referred to as the "upper cap_' The part of the boundary, for which

z _ O, lies on the second paraboloid, and will be referred to as

the "lower cap_' The only other boundary points of the solid are the

2
points of the unit circle x2+ y = 1 in the plane z = O.

The upper cap is, in this example, identical with the set S1,

defined in Section 5 of Chapter 19 while the lower cap is the set

S2 (also defined there). That is, every point of the upper cap is

a point of egress for the system _ = + l, _ = z, _ = x, and is a

point of ingress for the system _ = - l, _ = z, _ = x. The reverse
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is true of the lower cap.

To prove these assertions we merely note that

d x2 y2d-_[3z + + -1] = 5u + 2xz + _x (i)

which on the upper cap may also be written _n the form,

d - 2 y2 3y_L3z + x + _,_l]-- 3u + ( )x(1-x2_y 2) + 2xy (2)

Since the maximum absolute value on the cap of each of the quanti-

_ies (l-x2-y2), x and y_ is !, it is seen at once that the

d x2 y2sign of _[3z + + -i] when lul : I is the same as the

sign of u. Similar considerations apply to the lower cap.

More generally one might consider the paraboloids + cz + x2 +
m

2 2
y = a . We took a = i, c = 3_ in order to have a simple example

of a case in which the upper cap is SI and the lower cap is S2.

This would not be the case, when c is sufficiently small compared

a. For instance, when a = i and c = I, the point x = - i_2 'with

i i

y = _ z = 7' is on the upper cap and yet is a point of ingress for

the system { = _ I, _ = z_ _ = x_ instead of being a point of

egress as it should be if the entire upper cap contained only points

of SIO

Returning to _he case c = _ a = i_ (to which we hereafter
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confine attention), it maybe mentioned immediately that the region

N, as specified, is not controllable within itself. In fact, the

points (0, _ 1,0) can not be movedby taking lul _ i, without
d

leaving the region. For we find from (i) that _[3z + x2+ y2-1] =

3u_ if x = 0, y = _ io and z = 0o Hence, if we are to remain

on or below the paraboloid of the upper cap we must take u _ O.
d -

On the other hand we have _[-3z + x2+ y2-1] = -3u, if x = O_

y = _+ i, z = 0_ so that, if we are to remain on or above the para-

boloid of the lower cap, we must take u _ O. Hencethe only possible

way to stay within N or on _N is to take u = Oo But for this

value of u the point in question is an equilibrium point. It will

appear in the sequel that manyother points of N and its boundary

must be discarded if we are to be left with a region controllable

within itself. Weshall describe how such a discard maybe madeso

that the remaining region will be controllable within itself using

only bang-bang trajectories in the generalized sense defined in

Section 6 of the preceding chapter. The arcs of these bang-bang

trajectories are of three types, namely:

TYPE i.

TYPE 2o

TYPE 3a.

Solutions of _ = + i,

Solutions of

Solutions of

= Z, y = Z.

= -I_ _ = z, _ = x.

,2

= + z), : z, : x.
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TYPE 3b. Solutions of _ = + (_)x(y + z), _ = z, _ = x.

Arcs of Types 1 and 2 are allowed only interior to N al-

though their end points may lie on the boundary of N. Arcs of

Type 3a occur only on the upper cap, while arcs of Type 3b occur only

on the lower cap. Bang-bang trajectories are made up of a finite

number of arcs of these three types exclusively.

Arcs of Type 3a may be adequately discussed by considering

their orthogonal projections on the plane z = O. These latter

curves satisfy the differential equations

= ( )

= x (3)

Similarly the arcs of Type 3b are projected onto the plane

z = 0 and these projected curves satisfy the differential equations,

= - (3) (1-x<y2)

--x (4)

It is easy, by direct inspection of the differential equationsj

to discuss the phase portraits of (3) and (4). Thus the trajec-

tories of (3) cross the y-axis with zero slopes_ they cross the unit

circle with infinite slopes (except at the singular points x = O,

y = + 1)_ within the unit circle they have positive slopes to the
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right of the y-axis_ and they have negative slopes to the left of

the y-axis. The situation is reversed outside _he unit circle, but

it is only the interior of the unit circle with which we are pri-

marily concerned. If, for the moment_ we do consider points outside

as well as inside the unit circle_ we may note the fact that the

singular point (0_-i) is a saddle point and the point (0_ + i)

is a center. This leads to a situation illustrated in Figure i.

Similarly the trajectories on the lower cap are projected onto the

curves on the plane z = 0 illustrated in Figure 2.

FIGURE i_ (upper cap)

Co -t)
FIGURE 2_ (lower cap)
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Actually systems (3) and (4) admit simple exponential integrating

factors, namely e (2/3)y and e -(_/3)y respectively, so that we

readily find explicit equations for the curves in Figure i. They

are of the form

2
e'v''Y[x 2 + Y - 3Y + _] = const.

7
(7)

The corresponding equations for the curves in Figure 2 have the

form_

e-(_/3)Y[x2+ 2 + 3Y + _] = const. (6)

I

Not all of the curves on Figures i and 2 have equal importance.

In our discussion of the more important of these curves_ we shall

FIGURE 3. (upper cap) FIGURE 4. (lower cap)
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need to clutter up the figures with other markings. We therefore

refer to Figures 3 and 4, where only the two arcs _ and FS in

Figure 3 satisfy the differential equations (3) or the integrated

equation (5), and where only the two arcs DC and EM in Figure 4

satisfy the differential equations (4) or the integrated equations

(6).

The point S in Figure 3 is determined in such a manner that

it is the projection on the plane z = 0 of the point P where the

trajectory of Type 2 passing through the origin intersects the upper

cap. The coordinates of P may be found by solving a certain alge-

braic equation and in fact are found to be approximately x = -.0552_

y = +.0061, z = +.3323. Thus the point S on the xy-plane is

(-.0552 , y = +.0061). Using these values, the constant on the right

hand side of equation (5), was found to be approximately 3.4990 for

the curve FS. After this_ we may solve a simple transcendental

equation co find the coordinates of F(-.5597, +.8287).

Similarly the point M in Figure 4 is the projection on the

plane z = 0 of the point where the trajectory of Type i passing

through the origin intersects the lower cap. It turns out that M

has the coordinates +°0552 and

cuts the unit circle at the point
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The curve BA in Figure 3 is the trajectory of Type 3a

which approaches the saddle point A(0,-I) of the system (3). The

constant on the right hand side of equation (5) corresponding to

BA is therefore (21-_)e-2/3 and it is then possible to find the

coordinates of B (-.7231 + .6906) by solving an appropriate

transcendental equation.

The curve DC in Figure 4 is the trajectory of Type 3b which

approaches the saddle point C(O, + I) of the system (4). Pro-

ceeding as before it is possible to find the coordinates of

D( +.7231, -.6906).

From th_s description and from the material in Section 6 of

preceding chapter, it is evident that the leaf RI, 2 of the one-

dimensional switching manifold consists of the curve on the upper

cap corresponding to the curve FS of Figure 3 along with an arc

of Type 2 connecting with the origin. T_e leaf RI consists of

the curve on the lower cap corresponding to the curve EM of Figure

4 along with an arc of Type I connecting with the origin.

The leaf R2_ I of the two-dimensional switching manifold con-

sists of all trajectories leading into RI, I of a certain kind.

These trajectories_ just before their junctions with RI,I, will

run along arcs of Type 2_ but, if these arcs are followed backward,

-185-



it will be found that they intersect the upper cap along a certain

curve whose projection onto the plane z = 0 is the curve of Figure

3, EVS. Part of EVS_ namely VS, represents the intersections

of the upper cap with those arcs of Type 2 which join onto RI, I

at interior points of N. The other part of EVS, namely EV,

represents the intersection of the upper cap with those arcs of

Type 2 which join onto RI_ I at boundary points of N. As mentioned

above the part of RI_ I on the boundary of N is represented by

the curve EM in Figure 4. The curve EV in Figure 3 thus repre-

sents a curve on the upper cap whose points are carried along arcs

of Type 2 to points on a curve on the lower cap represented by the

curve EM in Figure 4. But R2_ I consists not only of the arcs

of Type 2_ just mentioned, but also the arcs of _--_e 3a which _

out an area on the upper cap, whose projection, on the plane

z = O_ is the shaded region AEVSFBA in Figure 3.

The leaf R2_ 2 of the two-dimensional switching manifold con-

sists of all trajectories leading into RI_ 2 of a certain kind.

These trajectories, just before their junctions with RI, 2 will run

along arcs of Type i_ but, if these arcs are followed backward, it

will be found that they intersect the lower cap along a certain

curve whose projection onto the plane z = 0 is the curve F Z M
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of Figure 4. Part of F _ M, namely ZM, represents the intersection

of the lower cap with those arcs of Type i which join onto RI_ 2 at

interior points of N. The other part of F Z M, namely FZ, re-

presents the intersection of the lower cap with those arcs of Type

i which join onto RI_ 2 at boundary points of N. As previously in-

dicated_ the paYt of RI_ 2 on the boundary of N is represented

by _he curve FS in Figure 3. The curve FZ in Figure 4 thus

represents a curve on the lower cap whose points are carried along

arcs of Type I to points on a curve on the upper cap represented by

the curve FS in Figure 3. But R2_ 2 consists not only of the

arcs of Type i_ just mentioned, but also the arcs of Type 3b which

fill out an area on the lower cap whose projection, on the plane

z = O, _s the shaded region EDCFZME in Figure 4.

To complete our description of Figures 3 and 4, it remains to

define _he curve DC in Figure 3 as the orthogonal projection on z = 0

of the curve of intersection of the upper cap with the arcs of Type

2 leading into the points on the lower cap represented by the curve

DC in Figure 4. Similarly the curve BA in Figure 4 is the ortho-

gonal projection on z = 0 of the curve of intersection of the lower

cap with tme arcs of Type i leading into the points on the upper cap

represented by the curve BA in Figure 3. Moreover, the points on
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the upper cap represented by shading with lines of negative slope

in Figure 3 are carried along arcs of Type 2 into the points of the

lower cap represented by shading with lines of negative slope in

Figure 4, except for somewhich reach points of R2,2 interior to

N before reaching the boundary of No Similarly, the points on

the lower cap represented by shading with lines of positive slope in

Figure 4 are carried along arcs of Type 1 into the points of the upper

cap represented by shading with lines of positive slope in Figure 3,

except for some which reach points of R2,1 before reaching the

boundary of N.

We are now in a position to isolate a subset N 1 of N which

is controllable within itself by bang-bang control. Namely N1 is

bounded above bythe part of the upper cap whose projection on the

xy-plane is the shaded region in Figure 3_ it is bounded below by

the part of the lower cap represented by the shaded region in Figure

4_ it is bounded laterally on the left by arcs of Type 1 leading

from the curve BA on the lower cap (whose orthogonal projection

is represented in Figure 4) to the curve BA on the upper cap

(whose orthogonal projection is represented in Figure 3)% and,

finally, it is bounded laterally on the right by arcs of Type 2

leading from the curve D C on the upper cap to the curve DC on
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the lower cap. We must exclude from NI the points on these lateral

boundaries as well as the cruves BA and DC on both the upper

and lower caps. For our bang-bang control sends all such points

asymptotically into one or the other of the singular points A and

C. Other points in N-N 1 are probably completely uncontrollable,

although this has not been _roved.

We now give a preliminary description of how bang-bang control

is effected within N I.

If the point is initially on the part of the upper cap repre-

sented by shading with lines of negative slope in Figure 3 or if it

is initially slightly below this region, the point is carried along

an arc of Type 2 until it meets R2, 2. If the meeting with R2, 2

occurs on the boundary, that is, on the part of the lower cap repre-

sented by similar shading in Figure 4, the system is switched to an

arc of Type 3b until it meets the curve represented by F Z M, at

which instant it is switched to an arc of Type 1. If, however, the

first meeting with R232 occurs at an interior point of N 1 the

switch to an arc of Type 1 is effected immediately. In either case

the point is conveyed along this arc of Type 1 until it meets R1,2.

This meeting may occur either on the upper cap on the curve represented
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in Figure 3 by FS or at an interior point of RI, 2. In the former

case the switch to the arc FS of Type 3a is made and then a last

switch to an arc of Type 2 is made. In the latter case the switch

to the arc of Type 2 is made immediately.

If the point is initially on the part of the upper cap represented

by shading with lines of positive slope in Figure 3, the point is

carried along an arc of Type 3a, until it meets the curve represented

by EVS in Figure 3, at which instant it switches to an arc of Type

2 until it meets Rl,1, and then is carried into the origin in an

obvious way.

If the point is initially just below this region, it must of

course, be carried first along an arc of Type i until it reaches this

region, and then its subsequent motion is the same as that discussed

in the preceding paragraph.

The above discussion applies to all points starting on t he upper

cap in N 1 or just below the upper cap. The discussion for points

starting on or just above the lower cap is carried out in an analogous

way and is left to the reader.
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For points starting deep in the interior of NI, one must of

course, always start with an arc of Type I or 2 depending on which

"side" of the two-dimensional switching manifold the initial point

may happen to be on. This will be made more clear in the sequel.

It may be seen that it is possible and useful to apply a topo-

logical transformation to NI in such a manner that it appears as

2
the right circular cylinder _2 + _ $ i, I_I < 1 in _, _ _-space.
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See Figure 5, which has been drawn and lettered in such a manner

that all lettered points in Figure 5 are the topological images of

the points on the upper or lower caps whose projections on the plane

z = 0 are similarly letered in Figures 3 and 4o The topological

transformation is further chosen so that the upper cap now_appears

as the left side of the cylindrical surface, and the laterial

boundaries previously referred to now appear as the two bases of the

cylinder. The leaves of the switching manifolds are represented in

Figure 5 as follows:

RI, I:

R2_i:

R2_2:

EM0, i.e., points (_,_,_) such that _2+ 2= i, _ = O,

_ 0, _ > 0, or such that _ = O, _ = 0, and 0 < _ S 1.

FSO, i.e, points (_,_,_) such that _2+ 2= l, _ = O,

_ 0, _ < 0 or such that _ = 0, _ = 0 and 0 > _ _ -1.

All points (_,_,_) for which either _ = 0, _2+ 2 < l,

> 0 or for which _ < 0_ _ < 0, and _2+ 2 = 1.

All points (_,_) for which either _ = 0, _2+ q2 < l,

< 0 or for which q > 0, _ > 0, and _2+ 2 = 1..

If the topological transformation which satisfies the above

requirements could be given explicitly, it would not be difficult to
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give an explicit representation of the switching function. For

there are essentially six possibilities for the position of the

initial point and with each of these possibilities there is a

unique choice for the Type of initial arc. These various possi-

bilities and corresponding types are indicated as followss

i. Interior to cylinder and above

2. Interior to cylinder and below

3. Onupper right cylindrical surface.

4. On lower right cylindrical surface.

5- Onupper left cylindrical surface.

6. On lower left cylindrical surface.

__-plane. Type 2.

__-plane. Type i.

T_pe 3b.

Type i.

Type 2.

Type 3a.

Finally 3 it may be mentioned that the shaded part of the

boundary of NI_ may also be represented as an annulus as in

Figure 5.1 of Chapter 19. However_ the behavior along the curves

where the two caps have common boundaries (i.e., the two halves of

the annulus) is somewhat different from that indicated in that figure

of Chapter 19.
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APPENDIX TO PART A

PARAMETRIC EQUATIONS OF THE THREE-DIMENSIONAL SWITCHING

MANIFOLD FOR THE FOURTH ORDER LINEAR SYSTEM WITH

EIGENVALUES (0, O, -k, k)

Peter S. Ying

(i)



Parametic Equations Of The Three-Dimensional Switching Manifold For

The Fourth Order Linear SystemWith Eigenvalues (0, 0, -k, k)

As_e mentioned in Chapter 17, the computation of the three-

dimensional switching manifold R3,1 of the fourth order linear

system with eigenvalues (O,0,-k,k) involves the use of the trans-

formation

Zl= -Yl

z2: -1-e_Yl[(y2+1)e_yl -21

z3= + l-e (Y3-1)e + 2]

(I)

We substitute into

R2,14

, 2 2

z2z3+ z2z3+ z2 < 0

kz I

e < (z2-z3-z2z3)/2z 2

(z3-z2+ z2z3)2 + 4z2z3= 0

z2-z3-z2z 3i log2( )
z4+ _-_ 2z 2

=0

(ii)

(2)



and let

kY1
U = e

= y3-1

= Y2+ 1

2
(3)

Then (2) becomes

-2_2u5 + (8_ + 2_2)u_ + (_2_-11_-8)u3+ (-4_ + 2_ + _)u 2

+ (_ + 4_-_)u-2n> 0

(4a)

2_u2+ (_-3)u-2_ > I

2(_u2- 2u+i)
(4b)

(_2_)u_ + (4_2_4_ +8)u3+ (_22 10__11)u2

+ (_..q-_._.n2 + 8)u + (4._2 + 4-_) = 0 (4c)

(iii)



= log2 2_u 2 + (_-3)u-2_ _ log2u

2(_u3-2u2 + u)
(4d)

The previous method for the computation of R3,1 was to eliminate

u between equations (4c) and (4d). On account of the extreme diffi-

culty of this elimination, it seemed wise to investigate the possi-

bility of bypassing this elimination with the purpose of developing an

adequate description of this switching manifold, leading perhaps to

satisfactory approximations.

Equation (4c) is a quartic equation in u, but, from the defini-

tion of u in equations (3) only positive roots are to be accepted.

Also 3 since the real logarithmic function is defined only for positive

values of the independent variables_ we see that _,_, and u also

must satisfy

1 + (_I] + l)u-2(ll + i) > 0

2(_u2-2u+ i)
(5)

Obviously, if we can solve equation (4c) for u and substitute

into equation (4d), we shall obtain a relation between _,_ and _,

(iv)



D

which will define a surface in (_,_,_) - space.

not intersect the plane _ = 0 at points where

_>l.

To prove the underlined statement we set

thus obtaining

This surface does

< 0 or where

= 0 in (4c),

f(u) = (4_ 2- 4_)U 3 + (-4_ + 8)U 2 - llu + 8 : 0 (6)

or u = 0. This last possibility is excluded by (3). Since the

discriminant of equation (6) is

A = i [1728B 4 - 5168B 3 + 5796_ 2 - 2889B + 54o]

16_4( _-i )4

D

it can be shown that A > 0 except when _ lies on the closed in-

terval between the two real zeros of A which are approximately

+ 0.740741 and-+ 0.749984. We recall that when Z_ < O, equation

(6) has three real roots; while, if A > 0, it has only one real

root° Suppose now that _ < 0 or _ > i. Then the coefficient of

u 3 in (6)must be positive. Hence f(-oo)=-co while f(O)= 8 > 0.

Hence (6) has a negative real root, and this is the only real root

(v)



under consideration. Hence,

< 0 or _ > l, the equation (4c) has no posi-

This completes the proof of the underlined

since _ > 0 for the values of

if _ = 0 and

tive real root.

statement.

When _ = 0 and 0 < _ < l, the coefficient of u 3 is

negative. Hence f(+ _) = -_ and f(0) = 8 > 0. Hence equation

(6) has at least one positive root if _ is between 0 and 1.

It, of course, has three positive_roots if

.740741 < _ < .749984.

We carried out a machine calculation of the roots of equation

(4c) and the values of _ given by equation (4d) for all even

integral values of _ and _ from -20 to + 20 and more de-

tailed calculations in the region -2 _ _ _ + 2 and -2 _ _ _ + 2.

From these calculations it was conjectured that there are no points

on the surface with _ < 0 for arbitrary values of h.

(vi)
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I. Simulation Of The Third-Order System

(a) The system described by

ol.

x=e, e =+l,

can be represented in phase space by the coordinates (M, _, x).

The system moves according to the equations (derived by integration)

= _t + _(o)

1
= _ ct 2 + M(O)t + _(0)

x=_l ct3 +51"_(°)t2 + _(o)t + x(o)

D

Given a point in phase space, the problem is to find the time-

optimal path to the origin _ = _ = x = 0. This should be accom-

plished by moving a certain time tl, then switching ¢ to -¢,

moving a second time t2, then switching back to £ again, and

moving a third time t 3 to O. The question is to determine the

switching times [tl,t2,t3]. This can be done using the control

function (see equation (12A) in Chapter 15)

2 _ _, where= -(sgn s3)_3

1 ..2 1 ..2
02= _ + _x sgn[_ + _x sgnM]

1..2 1

_:9 x + _ _ sgn[_ + _ x sgn _] + w X"D
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By setting _ initially to sgn(_)_ the plant movesalong

until it intersects the first switching surface, at which point

= O, _ is then switched. The system now movesalong a second

path until a is again O, when _ is again switched. The point

now moves into the origin monotonically, and one needs merely note

the time at which it actually passes through 0.

The control law was simulated on an IBM 1620 computer as

follows:

A point

itial value.

(_, _, x) is given, and _ is computedfor the in-

Then t is incremented from 0 until _ changes

sign. It is assumedthat the point has just passed through the

switching surface. We record t, then set it back to O, switch

_ and proceed along the newpath until _ again switches sign.

Recording the second t, switching _ setting t back to O, we

follow the last curve until we observe that I(_, _, x)l has begun

to increase, at which point we assumethe point is at its closest

to the origin.

In order to test the program, we had to determine check points

for which the optimal paths were known. A program to accomplish

this involved starting at the origin and marching backwards, switching,
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D

marching backward again, switching again, and finally backtracking

until we arrived at a point lying (arbitrarily) on the unit sphere.

Since the system is symmetric through the origin, we computed only

points whose initial c was + l, for their negatives have the

same times with starting _ = - 1. We computed some two hundred

points, all lying in the same "hemisphere."

The accuracy of the control law simulation depended, of course,

on the size of the t-increments.

Because of the "steepness" of the first switching surface, a

relatively small overshoot of t I resulted in missing the second

and third by a rather large amount. When the first t is good,

the others are good also.

D
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(b) The third order system

"_'+ k2_ = _, c = + i

whose eigenvalue k = 0, _ i, is a generalization of the system

which was described in Section I(a). We concerned ourselves with

the new case k = Z 1. After transforming to the space (Xl,X2,_) ,

the system is

Xl =c

_2= x2 + c

%= -x3 + _,

and the solution is

Xl= _t + CI

t
x2= C2e -

-t

-%e .

By means of the control function a:
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= sgn(a),

where _ = -(i + _I)F(_2,c3) + (l-gl)G(_2,s 3)

2 2 + 2(__2)2]F(_2,_5 ) : [[_(i + _2)-_2 ]2 + 4_2_]'[_3(I + _2) -_2 _2+

2 2 2_22]+ 4_2_3]'[-_'3(1-_2 ) -_2 "_2 +G(_2,_, 3) = [[-_3(1 - _2 ) + _,2]2

°2 = h2(xl'x2'5":'l)

':'3: h3(Xl'X2':%":'z)

O1 = -sgn h2(Xl3X2_l)

h2(Xl,X2, h) = -h + e-hXl(x2 + h)

_(xl,x2,_) : ,l + _'_l(x 3- _)

£1 = sgn(-xl)

The initial point (xlo,x20,_O) is steered into the origin in the

optimal time. This is accomplished by determining the initial value

of _ = sgn(g), and following along the trajectory passing through

(xlo,x20,_O) until _ switches sign (having just passed through

0). We then switch c, set t back to O, set new initial condi-

tions and progress along the new trajectory until s again switches
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sign. Werepeat this process until the point reaches the origin.

In actuality, the error accumulated from overshooting the

switching surfaces prevents us from reaching exactly the origin.

In fact, although we should always be able to get to the origin

from anywhere in the space in two switchings, we allow the possi-

bility of more switchings if they tend to drive the point closer

to the origin. Westop whenthe chatter caused by proximity to

the origin is greater than the distance involved, causing the point

to circle the origin endlessly in a limit cycle.

Whenthis system was simulated on an IBM 1620 computer, it was

first necessary to produce test points whose optimal times to the

origin was known. This we accomplished, in the samemanneras in

I(a) by moving backwards from the origin, three specified times,

arriving finally at our initial point. The control law is only

valid for the set

Ix2J< l, Ix31< 1.

When the control law was simulated, we found that although we

allowed more than two switchings, it was always the case that the

point was closer to the origin after two switchings than three or

four. We have therefore reproduced only the data for the first two

switchings.
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Time Time_t Point Distance
Actual Computed

•o5 -.3o,-.21,-.52 .3, .3, .3 .3, -35,.35 .05

.05 .18, .13, .32 .27,.36,.27 .30,.50,.40 .09

•05 .39, -33, .47 .52,.24,.15 .55,.35,.20 .03

.05 .05,-.02, .16 .00,.25,.30 .05,.35,-35 .05

.02 -.30,-.21,-.52 .3, .3, -3 .30,-32,-33 .02

•01 -.18,-.13_-.32 .27,.36,.27 .27,-38_.29 .01

•-1 -.05_ -023-.16 .00_.25,.30 .01,.27,.31 .O1

It will be seen that the smallest distance to the origin after

two switches is of the same order of magnitude as the t-increment.
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(c) Consider the third order system with one zero and two

equal, but opposite in sign_ real eigenvalues

._._ _2_ = _ + w(t)

where Icl _ 1 and w(t) is an external disturbance.

may be represented in vector form as

The system

(i)

or

: 20 Y2 + (_ + w)

In (1) the state variables have a physical significance: x = Yl'

= y2, and _ = Y3" Equation (1) may be written in a much simpler

mathematical form, however, the state variables lose their physical

significance. With the transformation

x=Qy

where Q is such that
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Q_Q-1 =A

and

Q a a_

equation (1) becomes

:Ax+a(_ +w) (2)

In (2),

A __. k and a =

0 -

It should be noted that the region of controllability for the

system with a disturhing force is different from that of the sys-

tem with no disturbances. In Section I(b) the region of controll-

1 Now con-
ability of the undisturbed system is the set Ix21 < _ .

sider the system with external disturbances

:Ax +a(c +w)

Further, suppose lw(t)l _ M on 0 <- t __ tl, where tI is the

time taken to reach the origin and M < 1 of course. Now the region
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of controllability is given by the set

Methods of Simulation

Three methods of simulating system (2) are presented. The

first considers using the control law derived in I(b) where w(t) = O.

The second is a method of calculating the optimum switching time in

the face of some external disturbance. Results are presented in a

later section for these two cases. The final method presents an

iterative scheme of calculating the initial condition of the adjoint

vector in the face of some known external disturbance.

(i) First Method

If a state vector in space is considered and it is desired to

move that vector to some desired position by use of the control law

developed in I(b) in the face of some external disturbance, it can

be assumed that the time will not be the optimum time of the no dis-

turbance case. The effect of the disturbance on the system trajectory

will vary from a decrease in time to travel to the origin to an in-

crease as compared to the no disturbance case elapsed time. The rea-

son for this is that as soon as there is a disturbance in the system,

a new system is being dealt with and the control law no longer applies.
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The time may well be shorter than for the no disturbance optimum

case, but it is not optimal for the new case. From the practical

point of view, however, since it is unlikely that all disturbances

will ever be accurately predicted it is desirable to know how the

control law will behave in the face of disturbances.

It was decided to test the control law by simulating constant

force disturbances_ up to a magnitude of _ 25 percent of c in

equation (2) with k = I. The results of this simulation are shown

in Figures 7,8,9. The magnitude of the disturbance applied is

scaled on the abscissa, both positive and negative, with the center

the no disturbance case. The ordinate is scaled in time for the

vector to reach the origin, with all times normalized to the no dis-

turbance optimum time.

(ii) Second Method

The second method is strictly a brute force method of calculat-

ing the switching times of the system with the external disturbance

present. The solution of (2) is given by

x(t) = eAtx(0) + eAt ft e-ASa(c + w)ds (3)

0
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Since we are interested in the control c = _ i which steers x(t)

from x(0) to the origin in mimimumtime and the control function

is unique, then any c = _ i, which steers x(t) to the origin, is

the optimum control function. With this in mind (3) may be rewritten

as

tf
-x(t) = f e-ASa(c + w(s))ds (4)

0

where tf is the time where x(t) = 0. Further, the optimal unique

function is c(t) = _ I and there is at most 2 switches in the sign

of _ as x(t) is steered from x(0) to the origin. Thus (4)

becomes

t I t 2 tf
-x(0) = U[ S e-ASads = f e-ASads + : e-ASads]

0 I 2

tf -As
+ f e aw(s)d 

where U is the initial sign of c(t) and where t I and t2 are

the first and second switching times respectively. Thusj if tl,t2,

and tf, the initial value of c, and the disturbing function w(t)

are known, then the problem is solved.
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AtIn order to write (5) in detail, one must evaluate e from

the series

At A2 t 2
e = I + At + _- + ...

'Thus

-As
e e-kS

0 ek

and

-As -k
e a =

Written out in full, equation (5) becomes

-Xl(0) u[ftl t2 tfds] tf-- ds - f ds + f + f
0 tI t2 0

w(s)as

-x2(0 ) = u[ftle-kSds _ ft2e'kSds + ftfe-kSds ]

0 tI t2

+ ftf_(s )e-kSds

0

-x3(0 ) : u[ftlekSds _ ft2ekSds + ftfekSds ] + ftfw(s)ekSds

0 t I t2 0 (6)
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The problem of solving this set of equations for the times tl,

t2,t f becomes intolerable unless some suitable constraint is put on

the sorts of disturbances one expects to encounter. The solution is

simple for a constant disturbance w(t) = C but this is an un-

realistic assumption. A much stronger solution would result from

allowing w(t) to be of the form

w(t) = b-ce -at

which is shown in figure 1.

b-¢

"tO

FIGURE 1

But this wind makes equation (6) impossible to solve by any algebraic

methods. Hence the compromise assumption is made_ namely,
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D

.(t) =
b -ce -at

b

W

b-G

t<d<tf_ =
t>d

0

I

I

I
I
!
d

FIGURE 2

_t

(7)

Where d is known in advance we have

-Xl(O) = U[2t I- 2t2+ tf] + bd + C(e-ad-1) + btf- bd

U ktl -kt 2 -ktf] b, -ktf
-x2(O ) = - _[2e -i -2e + e - [ke -i) + _-_+ a(e(-k-a)d-l)

U ktl kt 2 ktf] b ktf c (k-a)d-l)
-x3(0) = [[2e -i -2e + e + [(e -i) k --a (e

(8)

D
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2t I- 2t2+ tf(l + bU) + U[aC-(e-ad-1)+ Xl(O)] = 0

-kt I -kt 2 -ktf( 12e - 2e + e + bu) - kU[b + (e(-k-a)d-1) + x2(O)]-i = 0

ktl kt2 ktf(1 c (k-a2e - 2e + e + b_)+ _[-b - F-ci(e )a-l)+ _(o)]-i--o

or

(9)

2t l- 2t2+ ftf + R1 = 0

-kt I -kt 2 -ktf

2e - 2e + fe + R2 = 0

kt I kt 2 kt 3

2e - 2e + fe + _ = 0 (lO)

where

R 1 : U[_(e -ad -i) + Xl(O)]

R2 = -kU[b + k--_a(e (-k-a)d -I) + x2(O)]-i

e(_-a)d l) + (o)]-i= _u[-_- _--_( - x3

f=l+bU

This set of equations may be solved easily.
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t2= t I + l(ftf + Rl)

-kt I k[-t l- l(ftf + R1)l
2e -2e

-kt 3

+ fe + R2 = 0 (ii)

kt I k[tl+ _(ftf + R1)]

2e - 2e + fe kt3 + t:{3 = 0 (12)

From (12) we get

kt I ktf i

e = (fe + P'3)/2(e 2 k(ftf + R1) -1)

kt 1
By substituting this expression for e into equation (ll) and

incrementing tf from d (since it is known that tf is no smaller

than d), one need only observe the value of tf at which equation

(ll) changes sign. If at this point the coordinates

0 <_ t I =<t2 <:tf

are satisfied, then it is guaranteed that tl,t2,t f are the optimal

switching times.

This control scheme was simulated on an IBM 1620 Computer with

results reproduced later. There are two difficulties involved in

choosing the initial conditions for a test: choosing the correct
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initial value U of _ , and choosing a d which is not unrealisti-

cally small but which is nevertheless smaller than a readonable pre-

diction for tf. If D is the distance from the point x(O) to

the origin, then the fastest time in which a point on the D sphere

1
could possibly reach the origin is about _ D - its path being of

course_ the switching curve through the origin. Hence it is safe to

1
assign d any value less than _ D. The matter of choosing the

correct initial e is more difficult and more serious. An equation

for the switching surface c described in I(b) will give the initial

value, but use of this device seems self-defeating. Lacking that,

the choice is arbitrary.

D

(iii) Third Method

An Iterative Scheme for Calculating the Control Function

Rather than calculate the switching surfaces for a system, or

calculate the switching times, one might consider a method of solving

for the initial condition of the adjoint vector to the system. The

following is an example of the latter procedure.

It is well known that the time optimal control function ¢(t)

for the system
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x=Ax+a ,

is given by

e(t) = sgn[h(t)-a]

where _(t) is the solution of the adjoint system

= -A'_

with _(0) = _o " The solution of this adjoint system is

_(t) = e-A't_o

Thus the optimal control function is given by

_(t) = sgn[_o-e-Ata].

The time optimal problem is solved is the initial condition of the

adjoint vector _(0) = _o is known. The following method is an

iterative scheme to determine the value of _o for a given xo-

The method is due to Neustadt.* The method will be described first

for an autonomous system without external disturbances and then

* Neustadt, L.W., Synthesizing Time Optimal Controls. Journal of

Mathematical A_lysis and Applications, vol. l, no. 3_ December 1960.
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extended to the nonautonomous system with deterministic wind disturb-

ances.

I. Consider the first case, that is, the system governed by

(13)

Consider the set of attainability C(t) which is the set of initial

conditions x from which the origin can be reached in time t with
O

control c(t). Neustadt proves that C(t) is closed, convex, and

nonempty. If the system is normal, then the boundary of C(t), 8C(t),

contains no straight line segments. The system is said to be normal

-At
if the function _o'e a has a countable number of zeros, that is

g(t) is defined almost everywhere. Further, if x° lies on _C(t),

then an extremal control

|

¢(t) = sgn[No-e-Ata] , (14)

is required to reach the origin, where _o is the exterior normal

to C(t) at -x . C(t):Z_C(t') if t >t' and C(t) grows con-
O

tinuously with t°

The solution of (13) Using the optimum control function (14) is

given by
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At fte-AS a sgn[no"e'Asa]ds+ ex(t): Atxo o

Let t be the minimum time to reach the origin.

-As "ASaBds
: ft_Xo e a sgn[_o"e

0

(15)

Then (19) becomes

(16)

Define

-As a]ds
z(t,_o ) = _te-AS a sgn[qo'e

0

Surely for any _ _ C(t) and _ / z(t,no), no'Z(t,no) > no. _ "

Also

-As sgn[no.e
no.Z(t,no) : ft e a0 _o"

-As aids = ftln O'e-Asa Ids > 0
0

Thus _o'Z(t,no ) is a monotone increasing function of t

n O"

n o

op = no'_ < oq = no-Z(t,no)

for fixed

Figure 3 shoWs the geometrical relation of the vector z and

for the correct value of no- Note that for II_olI= l, the line

for any _ ¢ C(t) and _ / z(t,no)"
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FIGURE 3

Now form the scalar function

-As Ids+ (17)= ftI_oOe a _o-X
f(t'_°'x°) = _°'[z(t'_°) + x°] 0 o

and, for fixed _o andwhich is continuous in t,_o, and x° Xo:

is a strictly monotone increasing function of t.

Since no is the unknown that we are going to find through an

iterative scheme, an initial value of _o is chosen such that

TI_l).x ° = f(O,T1_ I ) , Xo) < O.

(i) is
A common choice for _o
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ty t(I)

in Figure 4.

incorrect. A series of corrections to the

in order to converge to the correct value.

If C(t) was a hypersphere then this initial guess at _o would in-

deed be the correct value. With this initial choice _l) , let

t increase until f(t,_ l) , Xo) = 0 and denote this value of t

The geometrical picture of the above statement is shown

If z(t(1) ' _o(i)) _ -Xo then the choice _i) was

_o vector is necessary

Neustadt suggests the

steepest descent method.

The correction in

 here

FIGURE 4

(1)
_o should lie along the "error vector"
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v(t(I))= -Xo-z(t(I),%).

(I)
Thus the corrected value of _o , called _2), is given by

(2)
{°l) -[k x + z(t (1) (1)] (18)_o = rl o ' _o

t(2)A new f(t,_ 3 x o) is formed and a is calculated. Again,

if z((2) q_2)) / -x ° then the procedure is continued. The cycle

(t(i) (i)) is within a small distance 5 ofis repeated until z _o

-X °
0

The value of k in (18) will affect the rate of convergence of

to the correct value. Paiewansky* used this procedure on the

second order system,

"_ + Oolx = _(t),

and states that increasing k decreases the number of iterations re-

quired to reach the optimum qo" Further increase in k results in

* Paiewansky, Bernard H., "The Synthesis of Optimum Controllers" pre-

sented at the Optimum System Synthesis Conference, September 1962.

The work was sponsored partly by the Wright-Patterson Air Force Base,

Aeronautical Systems Division, Contract Number AF 33(677)-7781.
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large and undesirable oscillations about the correct value.

In this procedure, we must solve the equation

f(t,_o,Xo) = O.

D
This defines a new function

t = T(_o,Xo)-

(i ) name ly,
Neustadt shows the correction vector to Jo '

_[Xo + z(t(i), _i))] is indeed proportional to grad. T, that is

[x o + z(t,_o)]

As a trivial example of this method_ consider the system

or

D
Xl = z2

x2 : ¢ (19)

The solution of (19) is given by
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pl oI -o•0I--l 
Equation (16) becomes

ilx (o _I
x2(O) _- 0_t 1 sgn[_2(O) - S_l(O)]ds

x = (-l,O) thenConsider
O

(1) -Xo 1
% = F_[ = (o)

Forming f(t,9_ 1), Xo) from (17), one has that

t2i) %)=--_ If(t,9 2

(i), Xo ) : 0 yields t (I) :_2Setting f(t, 9o

Now using (18) to calculate a new _o

9_2) = 9_i) _ k[Xo_ z(t(1), 9o(i)] = (i)
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where k
1

is chosen as

_2), t2f(t, Xo) = _- - t, t (2) = 2.

Forming z(t (2) (2)) one sees that
' _o

z(t(2) (2)) = -x o
' _o o

Thus _2) is the correct value.

given by

The optimum control function is

c(t) = sgn[_(2)(0)_°

= sgn[l-t]

IIo Consider the second case, that is, the nonautonomous normal

systems with external disturbances,

= A(t)x + a(t)g + w(t) (2o)

where w(t) is a known vector function. For our problem, A(t)

and a(t ) will be constants although this more general system is

presented for completeness. The solution of (20) is given by
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x(t) : ¢(t)Xo+ ft ¢(t)¢-l(s)a(s)¢(s)ds + ft ¢(t)¢-l(s _(s)ds
t t

o o (21)

where ¢(t) is the fundamental solution matrix satisfying the equa-

tion

_(t) = A(t)C(t), ¢(to) = I

= toof course, x° x( ).

The time optimal regulator problem consists in choosing an

_(t) on to _ t __T such that x(T) is zero for minimum T.

this in mind, (21) may be written as

With

-x
0
_ fr $-l(s_(s)ds= fr _'l(s)a(s)_(s)ds.

t t
0 0

Let

t

w(t) = -xo- I ¢-l(s_(s) ds
t
0

Recall that the optimum allowable control function is of the form

_(t) = sgn[_o-¢-l(t)a(t)]

The regulator problem now consists in choosing an _o such that
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I_ _-1(s)aCs)s_[_o_-l(s)aCs)]ds=_ (t)
t
o

for minimum T.

Let C(t) be the set of all points IT $-l(s)a(s)E(s)ds,

t
o

which can be reached from the origin using all allowable controls

in time t° As before, C(t) is a closed convex set. As in the

constant coefficient case, let

z(t,_o ) : it ¢-l(s)a(s)sgn[_o. ¢-l(s)a(s)]ds .o°
t
o

Since z(t,_o) is an extremal response, it lies on 8C(t) and _o

is the exterior normal to C(t) at z(t,_o). As in the previous

case, we define a new scalar function

f(t,_o,e ) = _o-[Z(t,_o) - e(t)]

(i)._(to)> o,Choose _I ) such that _o

(1) _(to)
_o : lle(to)ll

a common choice being

Now

f(to,_l ) e) (1) e(to ) < 0= -_0 °
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(i)
Let t increase from to until f(t,_ ° ,_) = 0 and denote this

value by t(1) o As in the constant coefficient case choos_ a new

_o as follows

q_2) = _o(i) + kv(t(1)) = q_l) + k[e(t (I)) - z(t (I), qo(1))]

This iteration process is continued until _i+l)= q_i) o This final

_i) is the correct value. Figure (5) illustrates the geometrical

picture of the above statements.

FIGURE 5

(iv) C0mparison of Methods

The control laws were tested under various sorts of disturbances.

First, the switching surface control, in which the switching surfaces
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for no disturbance were computed in advance and used to determine

switching points, was employed to drive points into the origin

against small constant constraints. Next the method of computing

switching times directly was used. With this method the optimal

times for the wind-blown system were found. These times are com-

pared, in a series of graphs below, with the non-optimal times for

the same plants under the same disturbances.

Finally, the time-computing method was used to study the be-

havior of the plants under variable constraint conditions. In all

cases, as stated above it is required that the disturbance became

constant before the plant reaches the origin.

The formula for the kind of disturbances in the second method

is

=fh-ce -at, t __ d < tf
w(t) Ib , t>d

This typical wind is shown in Figure 6.
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OPTIMAL CONTROL UNDER CONSTRAINTS - METHOD 2
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W

I
I _-t

FIGURE 6

Several things are noteworthy about this method. First of all,

although the running procedure is essentially the same as that of

method 1 -- hunting for a change of sign in a polynomial (see

"Gilchrist Control law" Fortran program in Appendix) --the second

method gives much greater accuracy with respect to the time incre-

ment° The final distance to the origin is less than one tenth the

distance found in the other procedure, and the times found are ten

to forty percent more accurate° Such a gain in accuracy, however,

is more than offset by the unfeasible necessity of knowing the wind

velocity in advance° Thus, while method 2 has many theoretical

advantages, its information prerequisites make it somewhat impractical.

A comparison of the computed times to the origin by methods 1

and 2 follows° In method 1 no allowance was made for the wind, which
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merely disturbed the normal path to the origin° In method 2, the

optimal paths were computedwith the wind disturbance taken into

account. The times have been normalized with respect to the

(known) optimal times. Refining the t-increment would have the

double effect of smoothing both curves, and moving the two points

on the t-axis closed to the correct position D = O_ t = l_

The following data was obtained from various values of a,b,c,

d being set arbitrarily to 3/a_ and k, as, throughout, equal

to + 1.
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The simulation using method i indicates that the control law

is workable in the face of disturbances which, in effect, cause the

state vector to move according to a non-optimal control law. A

rough estimate from Figures 7,8, and 9 show that the greatest in-

crease in time is approximately 40 percent, although it must be

admitted that part of this increase may be due to inaccuracies in

the simulation (too large a time increment). It is difficult to

estimate whether this increase in time would be good, bad or in-

different in a practical system. A general indication of its

practicality can be obtained by referring to figures %8, and 9

which also illustrate simulation carried out by assuming advance

knowledge of the disturbances and adjusting the control law accord-

ingly.

Appendix contains the two FORTRAN programs used to execute these

two tests, method 1 (CONTROL LAW III WITH STEP NOISE) and method 2

(a_cm_isT COBOL U_W).
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Synthesizing Performance Under Disturbances

The system

•_- _ -x2 _: = _

can be controlled optimally by a number of different schematiza-

tions of the same control law. Some of these methods involve dis-

covering expressions for the switching surfaces, precomputing the

switching times, or treating the switching time equations themselves

as formulas for the switching surfaces. The first two methods were

described extensively in the previous sections I(b) and I(c). The

last method, though less highly developed than the others, has some

merit and is described below.

The solution to the (transformed) system, which is affected by

some external disturbance w

=Ax +w) (22)

is given by

x(t) = eAtx(O) + At fte-ASb( c + w)ds

0

(23)
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Since it is desired to reach the origin in time t, x(t) = 0. Hence

-x(o)=/t e-A_t(c+ _)ds, (24)
0

where

0 0 0

A= 0 k 0

0 0 -k

I

b = i

i

-As
e

i 0 0

= 0 e-ks 0

0 0 eks j and

1

-Asb -kse = e

ks
e
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The three equations comprising equation (24)become

Xl(O) = ft (_+ w)ds
0

x 2(o)= ft(e-_S(_+ w)ds
0

(o)= ft e_S(_+ w)ds (25)
0

Let us make two assumptions: first, that the point x(0) is on the

lowest order switching surface*, SI, second, that the disturbance

w(t) is a constant w. Then exactly one switching at time t 2 will

be required to reach the origin.

Let U designate the initial value of

x(O) is on a switching surface S1, c = -U

_. Since we assume that

on SI.

-Xl(0 ) = -U[2t 2- t3] + wt3

kt 2 -kt3_l] -kt 3w (e -i)-x2(O ) = U[2e -e

kt2 + w
-x3(O ) = -U[2e -ekt3-1] _ (ekt3-1).

* By lowest order switching surface we understand the surface at

which one switches for the first time - assuming that the initial

point x(O) was not on a switching surface. Subsequent surfaces

are high-order.
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Asslzme k = i.

R2= U(x2(O ) + w) - I

- 1

G=I+U_

Then

2t2- Gt3+ RI = 0

-t 2 -t3
2e - Ge + R2 = 0

2et2 - Get5 +R 3 = 0

From (26b)

-t 3
e

t 3
e

-t3 -t2

Ge = 2e + R2

= (2e -t2
+ R2)/G

: G/(2e -t2
+ R2 )

From (26e)

a

b

(26)
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t2 -t2

2e - G2/(2e + R2) + R5 = 0

t 2 -t 2

4 +2R2e - m2 +2_3e +R2R3 =0

2t2 et2(4_a2
2R2e + + R2Rs) + 21_ = 0

t 2
e = ( -B-B2-4AC )/2_A (27)

Where A = 2R 2

B = 4-G 2 + R2R 3

C = 2R 3

t3 t 2

e : (2e +  )IG (28)

The assumed condition, that x(O) be on a switching surface, is

true if equation (26a) is satisfied for these values t2,t 3. The

fun ct ion

F(x) = 2t2- ot3 +R l (29)

must therefore be zero if x(0) is on a switching surface. The

converse condition -x(0) on S1 if F is 0 will also hold if,

in addition_ the inequalities

t3 _ t2 _ o (3o)
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hold. Thus we have

F(x) = 0 and t3 -> t2 __ ) <=> is on S I

These conditions then are necessary and sufficient for x to be on

a switching surface, of course, if x happens to lie initially on

a high order switching surface (in the three-dimensional case, this

means that x lies on the trajectory through the origin), F(x) = O,

and either t2= t3_ or t2= 0, depending on the sign of U. In

addition_ F is continuous in x, so the magnitude of F provides

a measure of how far x is from SI. By evaluating F(x) as tI

is incremented from O, one need only observe the point at which

F(x) changes sign_ and if the inequalities are satisfied there, x

will have just passed through a switching surface. Since we have

taken care not to land exactly on the switching surface, the process

may be begun again.

The disadvantages of this method are that the sign of F(x)

gives no clue as to the sign of _ and that there are large regions

on which F cannot be evaluated due to the discriminant's being

negative (although it must be non-negative on a switching surface).

However, these are not serious difficulties_ especially the dis-

criminant problem, because the discriminant is zero on all high-order
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switching surfaces. On _he other h_nd_ the method has several ad-

vantages, being faster than the others, and just as accurate.

Its greatest advantage_ however, lies in its ability to drive

a plant optimally to the origin in face of extremal disturbances.

These disturbances are fed into the computer as the variable w(t),

which we earlier assumedto be constant. The control law takes

such constant disturbances into account when computing the optimal

trajectories. Following are graphical comparisons of the sime needed

to reach the origin disturbance-optimally_ with the time neededwhen

a disturbed system is controlled by the no-disturbance law.

Chatter

It will readily be seen that the greater the magnitude of the

disturbance, the greater the advantage of disturbance-optimal con-

trol. These graphs were prepared by simulating the optimal system

within a .001 second time increment, small enough so that finer in-

crements would have no discernible effect on the graph. The non-

optimal curve was prepared wit h a larger increment, .005, because it

was discovered that a finer increment actually increased the time to

the origin. If the optin_l path is as shown in Figure ii with the

net effect of the disturbance w as shown, the non-optimal control

will cause the plant to chatter back and forth across the switching

surface as shown in Figure 12.
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The smaller the increment, the more the trajectory will chatter, re-

sulting in a longer time needed to reach the origin. With a .005

increment, up to 17 switches in under .7 seconds were needed to reach

the origin.

Sensing Disturbances

The disturbance-optimal control law would be useless without

some scheme for actually sensing disturbances as they occur. As a

plant moves through phase space, its path is disturbed from the pro-

per path according to the differential equation. It moves normally

according to

x(t) = eAtx(O) + eAt ft e-ASb ¢ ds

0

But when disturbed_ its path is described by

x(t)= Atx(o)+ At fte-ASb(_+ w)ds
0

From (31)we get

xl(t ) = Xl(O ) + (c + w)±

(31)

(32)

xl(t)-Xl(O)
w = t - _ (33)
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This value w is the average disturbance over time

disturbance which would have moved x(O) to x(t).

at time t = 0 is given by

t, the constant

The disturbance

w =  l(O)

Since this disturbance may be sensed as soon as it occurs, merely by

comparing the actual position of the plant to its predicted position,

it is feasible to take this disturbance into account when computing

optimal trajectories.

Usin_ Disturbance Information

Knowledge of the disturbance level at any time is again use-

less unless accompanied by some assumption as to its future activity.

In the cases tested, it was assumed that the disturbance would remain

constant until the plant had been forced into the origin. A slightly

better scheme involves taking a new reading of the disturbance at

each increment, but still treating each new reading as though w would

remain constant at that level until the origin was reaches. However,

wind charts compiled at rocket launching sites (since wind is the

major disturbance encountered) indicate that the winds most commonly

found are like the ones shown in Figures 13 and 14.
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The most reasonable approach to the problem of optimiing response with

respect to wind would seem to be combining knowledge of the wind chart

with on-line sensing. In other words_ the best possibility lies in

sensingthe wind as the plant moves_ and from this date, plus knowledge

of habitual wind patterns, form good guesses as to the activity of the

wind - in the very near future. This is a possible area of future

study.

Computer Simulation

The optimal and non-optimal responses with respect to disturbances

were run on an IBM 1620 Computer. The computer program for the opti-

mal control law is in Appendix A.
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IV. COMPUTER SIMULATION OF THE FOURTH ORDER SYSTEM

As of now, no control law has been formulated for the system

x(_)-_Zx"--_ (37)

whose eigenvalues are O,O,k,-k.

were applied to the system

The numerical methods which

"2"- k2_ = c, (36)

namely, solving explicitly the equations representing the solution

IB and II will not work on this much more complicated system. Since

optimal control is not presently available for the [0, O,k,-k]

case, it was decided to apply to it non-optimal control, to deter-

mine how that compared to the optimal.

The most likely scheme for controlling this system non-optimally

seemed to be applying the control law for the third order case (equa-

tion 36), whose eigenvalues are [O,k,-k] for the third order case,

written vectorally as

_(t)= _ + bc (3?)
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where

I

X = I°• A= 0 i

k2 0

and b = , the control law was found by first transforming

to a diagonal form A_

A= k

0 -

and b to

i

b = i

i

by a matrix Q such that

Q-l_Q = A

and Q-l_ : b.

The matrix Q-I was found to be
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Q-1 iO l0 i

0 -I

The control law operates on the new variables x' = Q-lx. However,

it was not possible to diagonalize the matrix of the fourth order

system, since it had two nondistinct eigenvalues. Therefore, the

running proceedure for this test was to move a plant according to

the (untransformed) fourth order system, and control the (transformed)

variables x_ x2, .

The solution to the fourth order system was as follows:

x (4)- k_ : c. Let k = 1

Then x(t) = eAtx(O) = eAt It e-ASb e ds

0

At
where e =

i t -I + cosh t -t + sinh t

0 I sinh t -i + cosh t

0 0 cosh t sinh t

0 0 sinh t cosh t
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eAtb =

-t + sigh t

-i + cosh t

sinh t

cosh t

Let _ = x(0) = Ite-A% _ ds.
0

For an interval [0,t] over which e does not change sign, we have

I t2_l= xz(o ) - 5_ + cosh t -1

_2= x2(0 ) - t + sinh t

_<'x_(o) + oo_h t -1

_4:= x4(°) + sirra .t

_us x(t) = _At{(t) the oo_trol law i_ c = sgn(_), where

(xl,x2 (Q-ix)= _ ' '_x _ a = d . The actual formulation of _ is

described in iB. To find test points for the fourth order systems_

a program was used which found x(O) according to the equations

x(t) = eAt(x(0) + Ire-ASh e ds)

0

When x(t) : 0
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x(0) = - fte-ASb c ds.

0

One could find x(0) from the specifications of the switching times

tl,t2_t3,t 4.

At this time, the computer simulation has not worked. One

possible reason for the failure is that the control law for the

system

"_'- k2_ = c,

which is Laplace-equivalent to

1

s (s2-k 2 )

might better be used to control

x

or

S +_

s2 ( s2_k2 )
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This is because for small _,

s +C_ - 1

s(s 2- k 2) " s(s 2_ k 2)

This new control scheme has not yet been investigated.
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APPENDIX A

C CONTROL LAW III WITH STEP NOISE

1 FORMAT (FI0.4,FI0.4,FIO. 4,FI0.4)

2 ;OmiT (6XZ4,FZ0.2,mO._/)
30 FOreST(6Hm_, FIO.4,FI0.4/)
31 FORMAT (FI0.4)

DIMENSION T(20)

3 ACCEPT I, XXI,XX2,XX3,DT

33 ACCEPT 31, EPM

EPN=EPM

32 X!=XXl

X2=XX2

x3:xx3
TYPE 31, EPN

DO 4 1 1,20

4 T(I)= O.

K=I

D=I.

EPI =i.

SIGI = i.

D1 = i0000.

TT=0.

I=l

C0 _ 21

6 IF(XI)5,7,5

9 EPl:-SIa_(xl)
7 IF(SIGN(EPI-EXP(-EPI*XI)*(X2 + EPI)))8,10,9

8 SIGI=-I.

GO TO i0

9 SIGl=l.

I0 Z:EXP(SIGI*XI )

SIG2:SIGI + I,/Z*(X2 + SIGI)

SIG3:SIGI + Z*(X3-SIGI)

Z=I. + SIG2*SIGI

SIGMA=- ((SIG3*Z-SIG2)**2 + 4. *SIG2*SIG3)*SIGI

SIGMA=SIGMA*(SIG3*Z**2*SIGI-SIG2**2+ SIGI*SIG2 + 2. *ABS(SIG2)**I. 5)

GO TO (II,12),K
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ii EPSI=SIGN(SIGMA) + EPN

K=2

12 D=XI**2 + X2"'2 + X3"2

IF(SIG_a*EPSl)2O,13,13
13 IF(I-2)17,17,14

14 IF(D1-D)*D2)15,15,24
15 DR=SCmT(D1)

TR=TT-DT

TYPE30, I, TR, DR

D2=-D2

IF(SENSE SWITCH 1)23,24
24 DI=D

17 GO TO (18,19),J

18 C2=X20 + EPSl

C3=EPSI-](30

J=2

19 TI:T(1) + DT

TT=TT + DT

E=E_(T(1))

XI:EPSI*T(I) + XI0

X2=C2*E-E_SI

X3:EPSI-C3/E
GOT06

20 EPSI=SIGN(SIGMA) + EPN

DR:SQRT(D)
TYPE2 _l _T]__DR

I=I +i

D2=I

21 XIO=XI

X20:X2

x3o:x3
J=l

GOT06

23 (IF(SENSE SWITCH 3)33,16

16 EPN:EPN + EPM

IF(SENSE SWITCH 2)3, 32

END
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C GILCHRIST CONTROL LAW III

1 FORMAT (FI0.4,FI0.4,FIO. 4,FIO. 4,FI0.4)

2 FORMAT (FI0.4,FI0.4,FI0.4)

3 FORMAT (FI0.4,FI0.4,EI4.4/)

D_SION _(3),_(3)
5 ACCEPT I,XI,X2,X3,DT

6 ACCEPT 2,A,B,C

D=3./A
E(2)=_(-D-A)
_(3)=_(-A + D)
E(1)=_XP(-A*D)
_:C/A*(E(1)-I.) + n
RS=B + C/(I.+ A)*E(2)-I. ) + X2

R_:-B-C/(I.-A)*(E(3)-Z.) + X3
U=I.

7 RI=U*RF

R2=U*RS-I.

R3=U*RT-I.

F=I.+ B*U

TYPE 2_RI,R2,R3

Sl=-l.

_(3):o.
9 E(3):_(_(3))

_3:_(. 5"(F*_(3)+ R1))
_1:2.*(E3-1.)/(_.(3)+ R3)
_2 :_mZ/E3
G:2.*(ERI-ER2) + F/E(3) + R2
TF(Sl)10,12, 15

i0 SI:0.

G1 =G

TYPE 3, T(3),ERI, G

11 _(3):_(3)+ or
IF(D-T(3 ))9, 9, ii

12 SI:I.

TYPE 3,T(3),ERI, G

IF(GI*G)I3,14,14

13 PAUSE

14 Gl=G

15 IF(SENSE SWITCH 1)16,18

16 TYPE 3,T(3),ERI, G

IF(SENSE SWITCH 2)17,18

17 U=-U

GOT07
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18 IF(at*0)2O,20,19
19 _(3)--_(3)+ D_

GI=G

GO TO 9

2o _E 3,_(3),ERI,a
_(1):1./ml
_(2):l.ym2
•(i)=_0a(_(i))
T(2 ):LOG (E (2) )

m--u*(2.*(_(1)-_(2))+ ;*_(3)+ Rl)
_:_.(3)*a
_(3):(2.*(_.(_)-_(2)) + R3)/_(3) + F
D=SQRT(RI**2 + R2"'2 + R3"2)

_F. l,_(1),_(2),T(3),D
IF(SENSE SWITCH 2)5,6

END
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WIND OPTIMAL SEEING EYE CONTROL WITH HELP

1 FORMAT (FI0.4,FI0.4,FI0.4,F10.4)

2 FORMAT (FIO. 4)

3 FORMAT (6X I4,FIO. 4,FI0.4/)

4 FORMAT (6H MIN, I4,FI0.4,FI0.4/)

30 FO_T (Z4)
Dn_1_Sr0__A(20)
DO 40 I=5,20

_o z_(1)--o.
5 ACCEPT 1,XXl,XX2,XX3,DT

ACCEPT 30,K

ETI=ET-I.

ERT=I./ET

ERTI=ERT-I.

6 ACCEPT 2,U

ACCEPT 2,W

TT=0.

I=l

D1 =i00.

XI =XXI

X2 =XX2

XS=XX5

ACCePT1,_A(1),_(2),_(3),_(4)
GO TO 52

8 S:-I.

SI=-!.

D2=i.

TI=0.

9 IF(!-K)Ig, 19,14

14 D=XI**2 + X2"'2 + X3"'2

IF(D2* (DI-D))15,15,18

15 IF(D2 )17,17, 16

16 A=SQRT(DI )

T2=TT-DT

TYPE 4, I,T2,A

IF(SENSE SWITCH 2 )26,17

17 D2=-D2
18 nl=O

19 RI=-U*XI

_2=u*(x2+ w )-l.
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_3---_*(x3-w)-l.
G=l. + U*W

A=2. *R2

B=4.-G**2 + R2*R3

DSC=B**2-8. *A'R3

IF(DSC )lO, ll, ll

lo IF(s)aol,aol,22
lOl S=I.

IF(S1)102, i02,22

102 Fl=-l.

SI=I.

GO TO 22

Ii E2=. 5*(-B-SQRT(DSC ))/A

_3:(2.*_2 + _3)/_
T2=LOG (E2)

T3=LOG(E3 )

F=2. *T2-G*T3 + R1

TF(Sl)12,13,13
12 ;I:SIGN(;)

FI=SIGN(FI + .5)

Sl=l.

13 IF(F'F] )25,20,20

20 IF(SENSE SWITCH 1)21,22

21 TYPE 3_I,TT,F

22 TI=TI + DT

TT=TT + DT

IF(SENSE SWITCH 3)23,24

23 TYPE 2,TT

ACCEPt 2,W
24 A=U + W

XI=XI + DT*A

X2=ET*(X2-A*ERTI)
X3:ERT*(X3 + A*ETI )

GOTO 9

25 IF(T3-T2)31,28,28
28 IF(T2 )31,29,29

29 TYPE 3,I,TT,F

I=I +l

U=-U
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D

32 A=U + W

RI=_(Z_ (I) )

R2=I./RI
n--xl+ A*TA(i)
x2--RI*(X2-A*(_2-1.))
x3=_2*(x3+ A*(Rl-l.))
GOT08

26 IF(SENSE SWITCH 3)9,6
31 Fl=-F1

GO TO 22

END
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